Update private_README.md
Browse files- private_README.md +2 -2
private_README.md
CHANGED
|
@@ -265,7 +265,7 @@ from nemo.collections.asr.models import SortformerEncLabelModel, ASRModel
|
|
| 265 |
import torch
|
| 266 |
# A speaker diarization model is needed for tracking the speech activity of each speaker.
|
| 267 |
diar_model = SortformerEncLabelModel.from_pretrained("nvidia/diar_streaming_sortformer_4spk-v2.1").eval().to(torch.device("cuda"))
|
| 268 |
-
asr_model = ASRModel.from_pretrained("nvidia/multitalker-parakeet-streaming-0.6b-v1
|
| 269 |
|
| 270 |
# Use the pre-defined dataclass template `MultitalkerTranscriptionConfig` from `multitalker_transcript_config.py`.
|
| 271 |
# Configure the diarization model using streaming parameters:
|
|
@@ -309,7 +309,7 @@ for step_num, (chunk_audio, chunk_lengths) in enumerate(streaming_buffer_iter):
|
|
| 309 |
is_buffer_empty=streaming_buffer.is_buffer_empty(),
|
| 310 |
drop_extra_pre_encoded=drop_extra_pre_encoded,
|
| 311 |
)
|
| 312 |
-
|
| 313 |
# Generate the speaker-tagged transcript and print it.
|
| 314 |
multispk_asr_streamer.generate_seglst_dicts_from_parallel_streaming(samples=samples)
|
| 315 |
print(multispk_asr_streamer.instance_manager.seglst_dict_list)
|
|
|
|
| 265 |
import torch
|
| 266 |
# A speaker diarization model is needed for tracking the speech activity of each speaker.
|
| 267 |
diar_model = SortformerEncLabelModel.from_pretrained("nvidia/diar_streaming_sortformer_4spk-v2.1").eval().to(torch.device("cuda"))
|
| 268 |
+
asr_model = ASRModel.from_pretrained("nvidia/multitalker-parakeet-streaming-0.6b-v1").eval().to(torch.device("cuda"))
|
| 269 |
|
| 270 |
# Use the pre-defined dataclass template `MultitalkerTranscriptionConfig` from `multitalker_transcript_config.py`.
|
| 271 |
# Configure the diarization model using streaming parameters:
|
|
|
|
| 309 |
is_buffer_empty=streaming_buffer.is_buffer_empty(),
|
| 310 |
drop_extra_pre_encoded=drop_extra_pre_encoded,
|
| 311 |
)
|
| 312 |
+
print(multispk_asr_streamer.instance_manager.batch_asr_states[0].seglsts)
|
| 313 |
# Generate the speaker-tagged transcript and print it.
|
| 314 |
multispk_asr_streamer.generate_seglst_dicts_from_parallel_streaming(samples=samples)
|
| 315 |
print(multispk_asr_streamer.instance_manager.seglst_dict_list)
|