taejinp commited on
Commit
ac28d6b
·
verified ·
1 Parent(s): cfc5de5

Update private_README.md

Browse files
Files changed (1) hide show
  1. private_README.md +2 -2
private_README.md CHANGED
@@ -265,7 +265,7 @@ from nemo.collections.asr.models import SortformerEncLabelModel, ASRModel
265
  import torch
266
  # A speaker diarization model is needed for tracking the speech activity of each speaker.
267
  diar_model = SortformerEncLabelModel.from_pretrained("nvidia/diar_streaming_sortformer_4spk-v2.1").eval().to(torch.device("cuda"))
268
- asr_model = ASRModel.from_pretrained("nvidia/multitalker-parakeet-streaming-0.6b-v1.nemo").eval().to(torch.device("cuda"))
269
 
270
  # Use the pre-defined dataclass template `MultitalkerTranscriptionConfig` from `multitalker_transcript_config.py`.
271
  # Configure the diarization model using streaming parameters:
@@ -309,7 +309,7 @@ for step_num, (chunk_audio, chunk_lengths) in enumerate(streaming_buffer_iter):
309
  is_buffer_empty=streaming_buffer.is_buffer_empty(),
310
  drop_extra_pre_encoded=drop_extra_pre_encoded,
311
  )
312
-
313
  # Generate the speaker-tagged transcript and print it.
314
  multispk_asr_streamer.generate_seglst_dicts_from_parallel_streaming(samples=samples)
315
  print(multispk_asr_streamer.instance_manager.seglst_dict_list)
 
265
  import torch
266
  # A speaker diarization model is needed for tracking the speech activity of each speaker.
267
  diar_model = SortformerEncLabelModel.from_pretrained("nvidia/diar_streaming_sortformer_4spk-v2.1").eval().to(torch.device("cuda"))
268
+ asr_model = ASRModel.from_pretrained("nvidia/multitalker-parakeet-streaming-0.6b-v1").eval().to(torch.device("cuda"))
269
 
270
  # Use the pre-defined dataclass template `MultitalkerTranscriptionConfig` from `multitalker_transcript_config.py`.
271
  # Configure the diarization model using streaming parameters:
 
309
  is_buffer_empty=streaming_buffer.is_buffer_empty(),
310
  drop_extra_pre_encoded=drop_extra_pre_encoded,
311
  )
312
+ print(multispk_asr_streamer.instance_manager.batch_asr_states[0].seglsts)
313
  # Generate the speaker-tagged transcript and print it.
314
  multispk_asr_streamer.generate_seglst_dicts_from_parallel_streaming(samples=samples)
315
  print(multispk_asr_streamer.instance_manager.seglst_dict_list)