--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct --- ```python from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier model_id = "Qwen/Qwen2.5-Coder-7B-Instruct" model_out = "Qwen2.5-Coder-7B-Instruct.w8a8" num_samples = 128 max_seq_len = 4096 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) recipe = [ SmoothQuantModifier( smoothing_strength=0.7, mappings=[ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], [["re:.*down_proj"], "re:.*up_proj"], ], ), GPTQModifier( sequential=True, targets="Linear", scheme="W8A8", ignore=["lm_head"], dampening_frac=0.01, ) ] model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="bfloat16", ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) model.save_pretrained(model_out) ```