jemartin commited on
Commit
2c9d0df
·
verified ·
1 Parent(s): 3c70f42

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +127 -0
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ model_name: ssd-10.onnx
5
+ tags:
6
+ - validated
7
+ - vision
8
+ - object_detection_segmentation
9
+ - ssd
10
+ ---
11
+ <!--- SPDX-License-Identifier: Apache-2.0 -->
12
+
13
+ # Single Stage Detector
14
+
15
+ ## Description
16
+ This model is a real-time neural network for object detection that detects 80 different classes.
17
+
18
+ ## Model
19
+
20
+ |Model |Download | Download (with sample test data)|ONNX version|Opset version|Accuracy |
21
+ |-------------|:--------------|:--------------|:--------------|:--------------|:--------------|
22
+ |SSD |[80.4 MB](model/ssd-10.onnx) | [78.5 MB](model/ssd-10.tar.gz) |1.5 |10 |mAP of 0.195 |
23
+ |SSD |[77.6 MB](model/ssd-12.onnx) | [86.4 MB](model/ssd-12.tar.gz) |1.9 |12 |mAP of 0.1898 |
24
+ |SSD-int8|[20 MB](model/ssd-12-int8.onnx) | [31 MB](model/ssd-12-int8.tar.gz) |1.9 |12 |mAP of 0.1892 |
25
+ |SSD-qdq|[20 MB](model/ssd-12-qdq.onnx) | [26 MB](model/ssd-12-qdq.tar.gz) |1.9 |12 |mAP of 0.1863 |
26
+
27
+ > Compared with the fp32 SSD, SSD-int8's mAP drop ratio is 0.32% and performance improvement is 3.49x.
28
+ >
29
+ > **Note**
30
+ >
31
+ > The performance depends on the test hardware. Performance data here is collected with Intel® Xeon® Platinum 8280 Processor, 1s 4c per instance, CentOS Linux 8.3, data batch size is 1.
32
+
33
+ <hr>
34
+
35
+ ## Inference
36
+
37
+ ### Input to model
38
+ Image shape `(1x3x1200x1200)`
39
+
40
+ ### Preprocessing steps
41
+ The images have to be loaded in to a range of [0, 1], resized to (1200, 1200) with bilinear interpolation and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. The transformation should preferrably happen at preprocessing.
42
+
43
+ The following code shows how to preprocess a NCHW tensor:
44
+
45
+ ```python
46
+ import numpy as np
47
+ from PIL import Image
48
+
49
+ def preprocess(img_path):
50
+ input_shape = (1, 3, 1200, 1200)
51
+ img = Image.open(img_path)
52
+ img = img.resize((1200, 1200), Image.BILINEAR)
53
+ img_data = np.array(img)
54
+ img_data = np.transpose(img_data, [2, 0, 1])
55
+ img_data = np.expand_dims(img_data, 0)
56
+ mean_vec = np.array([0.485, 0.456, 0.406])
57
+ stddev_vec = np.array([0.229, 0.224, 0.225])
58
+ norm_img_data = np.zeros(img_data.shape).astype('float32')
59
+ for i in range(img_data.shape[1]):
60
+ norm_img_data[:,i,:,:] = (img_data[:,i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
61
+ return norm_img_data
62
+ ```
63
+
64
+ ### Output of model
65
+ The model has 3 outputs.
66
+ boxes: `(1x'nbox'x4)`
67
+ labels: `(1x'nbox')`
68
+ scores: `(1x'nbox')`
69
+
70
+ <!-- ### Postprocessing steps
71
+ Post processing and meaning of output
72
+ <hr> -->
73
+
74
+ ## Dataset (Train and validation)
75
+ The SSD model was trained on 2017 COCO train data set - using mlperf/training/single_stage_detector repo , compute mAP on 2017 COCO val data set.
76
+ <hr>
77
+
78
+ ## Validation accuracy
79
+ Metric is COCO box mAP (averaged over IoU of 0.5:0.95), computed over 2017 COCO val data.
80
+ mAP of 0.195
81
+ <hr>
82
+
83
+ ## Publication/Attribution
84
+ Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector. In the Proceedings of the European Conference on Computer Vision (ECCV), 2016.
85
+
86
+ Backbone is ResNet34 pretrained on ILSVRC 2012 (from torchvision). Modifications to the backbone networks: remove conv_5x residual blocks, change the first 3x3 convolution of the conv_4x block from stride 2 to stride1 (this increases the resolution of the feature map to which detector heads are attached), attach all 6 detector heads to the output of the last conv_4x residual block. Thus detections are attached to 38x38, 19x19, 10x10, 5x5, 3x3, and 1x1 feature maps. Convolutions in the detector layers are followed by batch normalization layers.
87
+ <hr>
88
+
89
+ ## Quantization
90
+ SSD-int8 and SSD-qdq are obtained by quantizing fp32 SSD model. We use [Intel® Neural Compressor](https://github.com/intel/neural-compressor) with onnxruntime backend to perform quantization. View the [instructions](https://github.com/intel/neural-compressor/blob/master/examples/onnxrt/object_detection/onnx_model_zoo/ssd/quantization/ptq/README.md) to understand how to use Intel® Neural Compressor for quantization.
91
+
92
+ ### Environment
93
+ onnx: 1.9.0
94
+ onnxruntime: 1.8.0
95
+
96
+ ### Prepare model
97
+ ```shell
98
+ wget https://github.com/onnx/models/raw/main/vision/object_detection_segmentation/ssd/model/ssd-12.onnx
99
+ ```
100
+
101
+ ### Model quantize
102
+ Make sure to specify the appropriate dataset path in the configuration file.
103
+ ```bash
104
+ bash run_tuning.sh --input_model=path/to/model \ # model path as *.onnx
105
+ --config=ssd.yaml \
106
+ --output_model=path/to/save
107
+ ```
108
+ <hr>
109
+
110
+ ## References
111
+ * This model is converted from mlperf/inference [repository](https://github.com/mlperf/inference/tree/master/others/cloud/single_stage_detector) with modifications in [repository](https://github.com/BowenBao/inference/tree/master/cloud/single_stage_detector/pytorch).
112
+
113
+ * [Intel® Neural Compressor](https://github.com/intel/neural-compressor)
114
+ <hr>
115
+
116
+ ## Contributors
117
+ * [mengniwang95](https://github.com/mengniwang95) (Intel)
118
+ * [yuwenzho](https://github.com/yuwenzho) (Intel)
119
+ * [airMeng](https://github.com/airMeng) (Intel)
120
+ * [ftian1](https://github.com/ftian1) (Intel)
121
+ * [hshen14](https://github.com/hshen14) (Intel)
122
+ <hr>
123
+
124
+ ## License
125
+ Apache License 2.0
126
+ <hr>
127
+