Update handler.py
Browse files- handler.py +42 -40
handler.py
CHANGED
|
@@ -1,43 +1,45 @@
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
import torch
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 8 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 9 |
-
model.eval()
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
inputs
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
import torch
|
| 3 |
|
| 4 |
+
class EndpointHandler:
|
| 5 |
+
def __init__(self, path=""):
|
| 6 |
+
# Load model and tokenizer from the repo path
|
| 7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 8 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(path)
|
| 9 |
+
self.model.eval()
|
| 10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
self.model.to(self.device)
|
| 12 |
+
|
| 13 |
+
def __call__(self, data):
|
| 14 |
+
"""
|
| 15 |
+
This method is called when the endpoint receives a request.
|
| 16 |
+
Expected input: { "inputs": "some string" } or { "inputs": ["a", "b", ...] }
|
| 17 |
+
"""
|
| 18 |
+
inputs = data.get("inputs", None)
|
| 19 |
+
|
| 20 |
+
if inputs is None:
|
| 21 |
+
return {"error": "No input provided"}
|
| 22 |
+
|
| 23 |
+
if isinstance(inputs, str):
|
| 24 |
+
inputs = [inputs]
|
| 25 |
+
|
| 26 |
+
results = []
|
| 27 |
+
for text in inputs:
|
| 28 |
+
encoded = self.tokenizer(
|
| 29 |
+
text,
|
| 30 |
+
return_tensors="pt",
|
| 31 |
+
truncation=True,
|
| 32 |
+
padding="max_length",
|
| 33 |
+
max_length=4096,
|
| 34 |
+
)
|
| 35 |
+
encoded = {k: v.to(self.device) for k, v in encoded.items()}
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
outputs = self.model(**encoded)
|
| 39 |
+
|
| 40 |
+
raw_score = outputs.logits.squeeze().item()
|
| 41 |
+
clipped_score = min(max(raw_score, 0.0), 1.0)
|
| 42 |
+
|
| 43 |
+
results.append({"score": round(clipped_score, 4)})
|
| 44 |
+
|
| 45 |
+
return results
|