Text Generation
Transformers
Safetensors
English
internlm2
custom_code

Add library_name, link to code, and update pipeline tag

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +12 -4
README.md CHANGED
@@ -1,15 +1,23 @@
1
  ---
2
- license: mit
 
3
  datasets:
4
  - cerebras/SlimPajama-627B
5
  language:
6
  - en
7
- base_model:
8
- - internlm/internlm2-7b
 
 
 
9
  ---
10
 
11
  # Meta-rater Language Model (7.2B Parameters, 150B Tokens)
12
 
 
 
 
 
13
  ## Model Description
14
 
15
  This is a 7.2B parameter transformer-based decoder-only language model trained from scratch on 150B tokens selected from SlimPajama dataset using the **Meta-rater** framework with all 25 quality scores. This represents the largest and most capable model in the Meta-rater research, demonstrating maximal benefits of quality-driven data selection at scale.
@@ -224,4 +232,4 @@ Please refer to the license terms of the original SlimPajama dataset and follow
224
 
225
  ## Contact
226
 
227
- For questions or issues, please contact the authors or open an issue in the repository.
 
1
  ---
2
+ base_model:
3
+ - internlm/internlm2-7b
4
  datasets:
5
  - cerebras/SlimPajama-627B
6
  language:
7
  - en
8
+ license: mit
9
+ metrics:
10
+ - accuracy
11
+ pipeline_tag: text-generation
12
+ library_name: transformers
13
  ---
14
 
15
  # Meta-rater Language Model (7.2B Parameters, 150B Tokens)
16
 
17
+ This repository contains the model described in the paper [Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models](https://huggingface.co/papers/2504.14194).
18
+
19
+ Code: https://github.com/opendatalab/Meta-rater
20
+
21
  ## Model Description
22
 
23
  This is a 7.2B parameter transformer-based decoder-only language model trained from scratch on 150B tokens selected from SlimPajama dataset using the **Meta-rater** framework with all 25 quality scores. This represents the largest and most capable model in the Meta-rater research, demonstrating maximal benefits of quality-driven data selection at scale.
 
232
 
233
  ## Contact
234
 
235
+ For questions or issues, please contact the authors or open an issue in the repository.