mkurman commited on
Commit
2c15030
·
verified ·
1 Parent(s): 4b28dea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +182 -3
README.md CHANGED
@@ -1,3 +1,182 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: arcee-ai/AFM-4.5B
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ language:
6
+ - en
7
+ tags:
8
+ - medical
9
+ - instruction-tuned
10
+ - dpo
11
+ - grpo
12
+ - cot
13
+ - mergekit
14
+ - arcee-fusion
15
+ - openmed
16
+ license: apache-2.0
17
+ ---
18
+
19
+ # AFM-4.5B-OpenMed-GGUF
20
+
21
+ **Lightweight medical finetune on top of Arcee’s AFM-4.5B** for education and research use. Trained with a simple 3-stage recipe (SFT → DPO → GRPO-CoT) and finalized via **Arcee Fusion** weight merging (MergeKit).
22
+
23
+ More information about our **methodology** will be available in a forthcoming **blog post**.
24
+
25
+ All experiments were performed on **AMD MI300x** GPUs, with computing credits generously provided by [Hot AISLE](https://hotaisle.xyz/).
26
+
27
+ > ⚠️ **Medical safety**
28
+ > This model is **not** a clinician. It can hallucinate and should **not** be used for diagnosis or treatment. Always involve qualified medical professionals.
29
+
30
+ ---
31
+
32
+ ## TL;DR
33
+
34
+ - **Base:** [`arcee-ai/AFM-4.5B`](https://huggingface.co/arcee-ai/AFM-4.5B) – Arcee’s 4.5B instruction model intended for cloud-to-edge deployment.
35
+ - **Training (high level):**
36
+ 1) **SFT** proprietary synthetic medical datasets + **tool-calling (search) traces**
37
+ 2) **DPO** using **MedMCQA-derived** preferences (multiple-choice signal)
38
+ 3) **GRPO** for **chain-of-thought enrichment**, using **MedReason** verifiable rewards; short rationales encouraged, final answer checked.
39
+ 4) **Model merge:** **Arcee Fusion** (MergeKit) for selective, importance-aware parameter fusion.
40
+ - **Eval (EleutherAI harness; author’s settings, bs=64)**
41
+ - **MMLU:** **61.10** (vs **55.53** base)
42
+ - **MMLU-Pro:** **33.44** (vs **32.61** base) – harder 10-choice variant.
43
+ - **IFEVAL:** **63.55** (vs **63.67** base) – verifiable instruction following.
44
+
45
+ _Note:_ Arcee’s internal evals may use different harnesses; avoid cross-harness comparisons.
46
+
47
+ ---
48
+
49
+ ## What’s inside
50
+
51
+ ### Specialization steps
52
+
53
+ 1. **Domain SFT (medical + tools)**
54
+ Instruction-style synthetic medical Q&A + conversions; supervised **search/tool-use traces** to teach function-calling patterns compatible with chat templates.
55
+
56
+ 2. **Preference alignment — DPO**
57
+ Uses **MedMCQA** correctness as a proxy preference signal to bias toward concise, clinically reasonable options.
58
+
59
+ 3. **Reasoning enrichment — GRPO (CoT)**
60
+ **Group Relative Policy Optimization** without a critic; groups of sampled solutions are scored by **verifiable rewards** (answer correctness + light format checks). Trained with **MedReason** QA signal.
61
+
62
+ 4. **Finalization — Arcee Fusion (MergeKit)**
63
+ **Selective** weight fusion to preserve gains while limiting over-averaging; configured via `merge_method: arcee_fusion`.
64
+
65
+ ---
66
+
67
+ ## Intended use & limitations
68
+
69
+ **Intended:** Medical SLM's **research**, tool-augmented retrieval demos.
70
+
71
+ **Out of scope:** Unsupervised patient care, generating prescriptions, and time-critical guideline decisions.
72
+
73
+ ---
74
+
75
+ ## Evaluation
76
+
77
+ > Author-run with the EleutherAI `lm-evaluation-harness`; seeds, prompts, and templates affect absolute scores.
78
+
79
+ | Benchmark | AFM-4.5B-OpenMed | AFM-4.5B (same harness) |
80
+ |---|---:|---:|
81
+ | **MMLU** | **61.10** | 55.53 |
82
+ | **MMLU-Pro** | **33.44** | 32.61 |
83
+ | **IFEVAL** | 63.55 | **63.67** |
84
+
85
+ - **MMLU-Pro** increases difficulty (10 options; more reasoning-heavy); small deltas are still meaningful.
86
+ - **IFEVAL** checks **verifiable** constraints (length, keyword counts, format, etc.).
87
+
88
+
89
+ | mmlu | AFM-4.5B-OpenMed | AFM-4.5B |
90
+ | :-------------------- | :--------------- | :------- |
91
+ | **other** | | |
92
+ | clinical_knowledge | 67.55 | 65.66 |
93
+ | college_medicine | 64.74 | 54.34 |
94
+ | professional_medicine | 63.97 | 59.56 |
95
+ | virology | 49.4 | 48.19 |
96
+ | **stem** | | |
97
+ | anatomy | 62.96 | 56.3 |
98
+ | college_biology | 78.47 | 65.97 |
99
+ | college_chemistry | 44.00 | 37.00 |
100
+ | high_school_biology | 79.03 | 71.29 |
101
+ | high_school_chemistry | 53.2 | 43.84 |
102
+ | **groups** | | |
103
+ | humanities | 56.13 | 50.46 |
104
+ | other | 68.97 | 63.47 |
105
+ | social sciences | 73.25 | 68.61 |
106
+ | stem | 48.91 | 42.53 |
107
+
108
+
109
+ ### Reproduce (example commands)
110
+
111
+ ```bash
112
+ # MMLU classic
113
+ lm_eval --model hf \
114
+ --model_args pretrained=openmed-community/AFM-4.5B-OpenMed,parallelize=True,dtype=bfloat16,trust_remote_code=True \
115
+ --task mmlu \
116
+ --batch_size=64 \
117
+ --apply_chat_template \
118
+ --output_path=results \
119
+ --fewshot_as_multiturn
120
+
121
+
122
+ # MMLU-Pro (10-choice)
123
+ lm_eval --model hf \
124
+ --model_args pretrained=openmed-community/AFM-4.5B-OpenMed,parallelize=True,dtype=bfloat16,trust_remote_code=True \
125
+ --tasks leaderboard_mmlu_pro \
126
+ --batch_size=64 \
127
+ --apply_chat_template \
128
+ --output_path=results \
129
+ --fewshot_as_multiturn
130
+
131
+ # IFEVAL (verifiable instruction following)
132
+ lm_eval --model hf \
133
+ --model_args pretrained=openmed-community/AFM-4.5B-OpenMed,parallelize=True,dtype=bfloat16,trust_remote_code=True \
134
+ --tasks leaderboard_ifeval \
135
+ --batch_size=64 \
136
+ --apply_chat_template \
137
+ --output_path=results \
138
+ --fewshot_as_multiturn
139
+
140
+ ```
141
+
142
+ ---
143
+
144
+ ## Quickstart (Transformers)
145
+
146
+ ```python
147
+ from transformers import AutoTokenizer, AutoModelForCausalLM
148
+ import torch
149
+
150
+ model_id = "openmed-community/AFM-4.5B-OpenMed"
151
+ tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
152
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
153
+
154
+ messages = [
155
+ {"role": "system", "content": "You are a careful medical assistant. Cite sources and warn this is not medical advice."},
156
+ {"role": "user", "content": "Briefly: cellulitis vs erysipelas differences?"}
157
+ ]
158
+ prompt = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
159
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
160
+ out = model.generate(**inputs, max_new_tokens=256, do_sample=False)
161
+ print(tok.decode(out[0], skip_special_tokens=True))
162
+ ```
163
+
164
+ ## Data & training notes
165
+
166
+ * **SFT data:** Proprietary synthetic medical data + search traces.
167
+ * **DPO signal:** Preferences derived from **MedMCQA** multiple-choice correctness.
168
+ * **GRPO reward:** Answer-checking + format verifiers; **MedReason** used to shape faithful, short CoT.
169
+ * No known PHI; please open an issue if you spot any.
170
+
171
+ ---
172
+
173
+ ## Compatibility & licenses
174
+
175
+ * **Base model:** AFM-4.5B (Arcee). Refer to the base card/blog for architecture and usage details. License for AFM releases is **Apache 2.0**;
176
+ * **Merging:** MergeKit with **Arcee Fusion**; see repo/blog for configuration.
177
+
178
+ ---
179
+
180
+ ## Additional note
181
+
182
+ We also provide a **non-merged** [openmed-community/AFM-4.5B-OpenMed-RL-CoT](https://huggingface.co/openmed-community/AFM-4.5B-OpenMed-RL-CoT) checkpoint after step 3 (**GRPO**). In our harness, it shows **better CoT** behavior but a significant drop on **IFEVAL**. Consider it if you want maximum reasoning verbosity, then apply your own MergeKit recipe.