new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Futga: Towards Fine-grained Music Understanding through Temporally-enhanced Generative Augmentation

Existing music captioning methods are limited to generating concise global descriptions of short music clips, which fail to capture fine-grained musical characteristics and time-aware musical changes. To address these limitations, we propose FUTGA, a model equipped with fined-grained music understanding capabilities through learning from generative augmentation with temporal compositions. We leverage existing music caption datasets and large language models (LLMs) to synthesize fine-grained music captions with structural descriptions and time boundaries for full-length songs. Augmented by the proposed synthetic dataset, FUTGA is enabled to identify the music's temporal changes at key transition points and their musical functions, as well as generate detailed descriptions for each music segment. We further introduce a full-length music caption dataset generated by FUTGA, as the augmentation of the MusicCaps and the Song Describer datasets. We evaluate the automatically generated captions on several downstream tasks, including music generation and retrieval. The experiments demonstrate the quality of the generated captions and the better performance in various downstream tasks achieved by the proposed music captioning approach. Our code and datasets can be found in https://huggingface.co/JoshuaW1997/FUTGA{blue{https://huggingface.co/JoshuaW1997/FUTGA}}.

  • 8 authors
·
Jul 29, 2024 3

Adversarial-MidiBERT: Symbolic Music Understanding Model Based on Unbias Pre-training and Mask Fine-tuning

As an important part of Music Information Retrieval (MIR), Symbolic Music Understanding (SMU) has gained substantial attention, as it can assist musicians and amateurs in learning and creating music. Recently, pre-trained language models have been widely adopted in SMU because the symbolic music shares a huge similarity with natural language, and the pre-trained manner also helps make full use of limited music data. However, the issue of bias, such as sexism, ageism, and racism, has been observed in pre-trained language models, which is attributed to the imbalanced distribution of training data. It also has a significant influence on the performance of downstream tasks, which also happens in SMU. To address this challenge, we propose Adversarial-MidiBERT, a symbolic music understanding model based on Bidirectional Encoder Representations from Transformers (BERT). We introduce an unbiased pre-training method based on adversarial learning to minimize the participation of tokens that lead to biases during training. Furthermore, we propose a mask fine-tuning method to narrow the data gap between pre-training and fine-tuning, which can help the model converge faster and perform better. We evaluate our method on four music understanding tasks, and our approach demonstrates excellent performance in all of them. The code for our model is publicly available at https://github.com/RS2002/Adversarial-MidiBERT.

  • 1 authors
·
Jul 11, 2024

Music Flamingo: Scaling Music Understanding in Audio Language Models

We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily because of the scarcity of high-quality music data and annotations. As a result, prior models are restricted to producing short, high-level captions, answering only surface-level questions, and showing limited generalization across diverse musical cultures. To address these challenges, we curate MF-Skills, a large-scale dataset labeled through a multi-stage pipeline that yields rich captions and question-answer pairs covering harmony, structure, timbre, lyrics, and cultural context. We fine-tune an enhanced Audio Flamingo 3 backbone on MF-Skills and further strengthen multiple skills relevant to music understanding. To improve the model's reasoning abilities, we introduce a post-training recipe: we first cold-start with MF-Think, a novel chain-of-thought dataset grounded in music theory, followed by GRPO-based reinforcement learning with custom rewards. Music Flamingo achieves state-of-the-art results across 10+ benchmarks for music understanding and reasoning, establishing itself as a generalist and musically intelligent audio-language model. Beyond strong empirical results, Music Flamingo sets a new standard for advanced music understanding by demonstrating how models can move from surface-level recognition toward layered, human-like perception of songs. We believe this work provides both a benchmark and a foundation for the community to build the next generation of models that engage with music as meaningfully as humans do.

nvidia NVIDIA
·
Nov 13 2

I can listen but cannot read: An evaluation of two-tower multimodal systems for instrument recognition

Music two-tower multimodal systems integrate audio and text modalities into a joint audio-text space, enabling direct comparison between songs and their corresponding labels. These systems enable new approaches for classification and retrieval, leveraging both modalities. Despite the promising results they have shown for zero-shot classification and retrieval tasks, closer inspection of the embeddings is needed. This paper evaluates the inherent zero-shot properties of joint audio-text spaces for the case-study of instrument recognition. We present an evaluation and analysis of two-tower systems for zero-shot instrument recognition and a detailed analysis of the properties of the pre-joint and joint embeddings spaces. Our findings suggest that audio encoders alone demonstrate good quality, while challenges remain within the text encoder or joint space projection. Specifically, two-tower systems exhibit sensitivity towards specific words, favoring generic prompts over musically informed ones. Despite the large size of textual encoders, they do not yet leverage additional textual context or infer instruments accurately from their descriptions. Lastly, a novel approach for quantifying the semantic meaningfulness of the textual space leveraging an instrument ontology is proposed. This method reveals deficiencies in the systems' understanding of instruments and provides evidence of the need for fine-tuning text encoders on musical data.

  • 3 authors
·
Jul 25, 2024

Mustango: Toward Controllable Text-to-Music Generation

With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets.

  • 6 authors
·
Nov 14, 2023 1

Efficient Neural Music Generation

Recent progress in music generation has been remarkably advanced by the state-of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the MusicLM requires processing through these LMs one by one to obtain the fine-grained acoustic tokens, making it computationally expensive and prohibitive for a real-time generation. Efficient music generation with a quality on par with MusicLM remains a significant challenge. In this paper, we present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion model that generates music audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform. DPD is proposed to simultaneously model the coarse and fine acoustics by incorporating the semantic information into segments of latents effectively via cross-attention at each denoising step. Our experimental results suggest the superiority of MeLoDy, not only in its practical advantages on sampling speed and infinitely continuable generation, but also in its state-of-the-art musicality, audio quality, and text correlation. Our samples are available at https://Efficient-MeLoDy.github.io/.

  • 13 authors
·
May 25, 2023

MidiCaps -- A large-scale MIDI dataset with text captions

Generative models guided by text prompts are increasingly becoming more popular. However, no text-to-MIDI models currently exist, mostly due to the lack of a captioned MIDI dataset. This work aims to enable research that combines LLMs with symbolic music by presenting the first large-scale MIDI dataset with text captions that is openly available: MidiCaps. MIDI (Musical Instrument Digital Interface) files are a widely used format for encoding musical information. Their structured format captures the nuances of musical composition and has practical applications by music producers, composers, musicologists, as well as performers. Inspired by recent advancements in captioning techniques applied to various domains, we present a large-scale curated dataset of over 168k MIDI files accompanied by textual descriptions. Each MIDI caption succinctly describes the musical content, encompassing tempo, chord progression, time signature, instruments present, genre and mood; thereby facilitating multi-modal exploration and analysis. The dataset contains a mix of various genres, styles, and complexities, offering a rich source for training and evaluating models for tasks such as music information retrieval, music understanding and cross-modal translation. We provide detailed statistics about the dataset and have assessed the quality of the captions in an extensive listening study. We anticipate that this resource will stimulate further research in the intersection of music and natural language processing, fostering advancements in both fields.

  • 3 authors
·
Jun 4, 2024

Foundation Models for Music: A Survey

In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.

  • 43 authors
·
Aug 26, 2024 2

From Context to Concept: Exploring Semantic Relationships in Music with Word2Vec

We explore the potential of a popular distributional semantics vector space model, word2vec, for capturing meaningful relationships in ecological (complex polyphonic) music. More precisely, the skip-gram version of word2vec is used to model slices of music from a large corpus spanning eight musical genres. In this newly learned vector space, a metric based on cosine distance is able to distinguish between functional chord relationships, as well as harmonic associations in the music. Evidence, based on cosine distance between chord-pair vectors, suggests that an implicit circle-of-fifths exists in the vector space. In addition, a comparison between pieces in different keys reveals that key relationships are represented in word2vec space. These results suggest that the newly learned embedded vector representation does in fact capture tonal and harmonic characteristics of music, without receiving explicit information about the musical content of the constituent slices. In order to investigate whether proximity in the discovered space of embeddings is indicative of `semantically-related' slices, we explore a music generation task, by automatically replacing existing slices from a given piece of music with new slices. We propose an algorithm to find substitute slices based on spatial proximity and the pitch class distribution inferred in the chosen subspace. The results indicate that the size of the subspace used has a significant effect on whether slices belonging to the same key are selected. In sum, the proposed word2vec model is able to learn music-vector embeddings that capture meaningful tonal and harmonic relationships in music, thereby providing a useful tool for exploring musical properties and comparisons across pieces, as a potential input representation for deep learning models, and as a music generation device.

  • 3 authors
·
Nov 29, 2018

Language-Guided Music Recommendation for Video via Prompt Analogies

We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.

  • 4 authors
·
Jun 15, 2023

M^{2}UGen: Multi-modal Music Understanding and Generation with the Power of Large Language Models

The current landscape of research leveraging large language models (LLMs) is experiencing a surge. Many works harness the powerful reasoning capabilities of these models to comprehend various modalities, such as text, speech, images, videos, etc. They also utilize LLMs to understand human intention and generate desired outputs like images, videos, and music. However, research that combines both understanding and generation using LLMs is still limited and in its nascent stage. To address this gap, we introduce a Multi-modal Music Understanding and Generation (M^{2}UGen) framework that integrates LLM's abilities to comprehend and generate music for different modalities. The M^{2}UGen framework is purpose-built to unlock creative potential from diverse sources of inspiration, encompassing music, image, and video through the use of pretrained MERT, ViT, and ViViT models, respectively. To enable music generation, we explore the use of AudioLDM 2 and MusicGen. Bridging multi-modal understanding and music generation is accomplished through the integration of the LLaMA 2 model. Furthermore, we make use of the MU-LLaMA model to generate extensive datasets that support text/image/video-to-music generation, facilitating the training of our M^{2}UGen framework. We conduct a thorough evaluation of our proposed framework. The experimental results demonstrate that our model achieves or surpasses the performance of the current state-of-the-art models.

  • 4 authors
·
Nov 19, 2023 1

MusicScore: A Dataset for Music Score Modeling and Generation

Music scores are written representations of music and contain rich information about musical components. The visual information on music scores includes notes, rests, staff lines, clefs, dynamics, and articulations. This visual information in music scores contains more semantic information than audio and symbolic representations of music. Previous music score datasets have limited sizes and are mainly designed for optical music recognition (OMR). There is a lack of research on creating a large-scale benchmark dataset for music modeling and generation. In this work, we propose MusicScore, a large-scale music score dataset collected and processed from the International Music Score Library Project (IMSLP). MusicScore consists of image-text pairs, where the image is a page of a music score and the text is the metadata of the music. The metadata of MusicScore is extracted from the general information section of the IMSLP pages. The metadata includes rich information about the composer, instrument, piece style, and genre of the music pieces. MusicScore is curated into small, medium, and large scales of 400, 14k, and 200k image-text pairs with varying diversity, respectively. We build a score generation system based on a UNet diffusion model to generate visually readable music scores conditioned on text descriptions to benchmark the MusicScore dataset for music score generation. MusicScore is released to the public at https://huggingface.co/datasets/ZheqiDAI/MusicScore.

  • 3 authors
·
Jun 17, 2024

MuseChat: A Conversational Music Recommendation System for Videos

We introduce MuseChat, an innovative dialog-based music recommendation system. This unique platform not only offers interactive user engagement but also suggests music tailored for input videos, so that users can refine and personalize their music selections. In contrast, previous systems predominantly emphasized content compatibility, often overlooking the nuances of users' individual preferences. For example, all the datasets only provide basic music-video pairings or such pairings with textual music descriptions. To address this gap, our research offers three contributions. First, we devise a conversation-synthesis method that simulates a two-turn interaction between a user and a recommendation system, which leverages pre-trained music tags and artist information. In this interaction, users submit a video to the system, which then suggests a suitable music piece with a rationale. Afterwards, users communicate their musical preferences, and the system presents a refined music recommendation with reasoning. Second, we introduce a multi-modal recommendation engine that matches music either by aligning it with visual cues from the video or by harmonizing visual information, feedback from previously recommended music, and the user's textual input. Third, we bridge music representations and textual data with a Large Language Model(Vicuna-7B). This alignment equips MuseChat to deliver music recommendations and their underlying reasoning in a manner resembling human communication. Our evaluations show that MuseChat surpasses existing state-of-the-art models in music retrieval tasks and pioneers the integration of the recommendation process within a natural language framework.

  • 5 authors
·
Oct 9, 2023

Auto-Regressive vs Flow-Matching: a Comparative Study of Modeling Paradigms for Text-to-Music Generation

Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM

  • 3 authors
·
Jun 10 2

CMI-Bench: A Comprehensive Benchmark for Evaluating Music Instruction Following

Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.

  • 5 authors
·
Jun 13 2

MusicRL: Aligning Music Generation to Human Preferences

We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as "upbeat work-out music" can map to a retro guitar solo or a techno pop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM (Agostinelli et al., 2023) model of discrete audio tokens finetuned with reinforcement learning to maximise sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and quality only account for a part of it. This underscores the prevalence of subjectivity in musical appreciation and calls for further involvement of human listeners in the finetuning of music generation models.

  • 14 authors
·
Feb 6, 2024 1

Semi-Supervised Contrastive Learning for Controllable Video-to-Music Retrieval

Content creators often use music to enhance their videos, from soundtracks in movies to background music in video blogs and social media content. However, identifying the best music for a video can be a difficult and time-consuming task. To address this challenge, we propose a novel framework for automatically retrieving a matching music clip for a given video, and vice versa. Our approach leverages annotated music labels, as well as the inherent artistic correspondence between visual and music elements. Distinct from previous cross-modal music retrieval works, our method combines both self-supervised and supervised training objectives. We use self-supervised and label-supervised contrastive learning to train a joint embedding space between music and video. We show the effectiveness of our approach by using music genre labels for the supervised training component, and our framework can be generalized to other music annotations (e.g., emotion, instrument, etc.). Furthermore, our method enables fine-grained control over how much the retrieval process focuses on self-supervised vs. label information at inference time. We evaluate the learned embeddings through a variety of video-to-music and music-to-video retrieval tasks. Our experiments show that the proposed approach successfully combines self-supervised and supervised objectives and is effective for controllable music-video retrieval.

  • 4 authors
·
Dec 8, 2024

PBSCR: The Piano Bootleg Score Composer Recognition Dataset

This article motivates, describes, and presents the PBSCR dataset for studying composer recognition of classical piano music. Our goal was to design a dataset that facilitates large-scale research on composer recognition that is suitable for modern architectures and training practices. To achieve this goal, we utilize the abundance of sheet music images and rich metadata on IMSLP, use a previously proposed feature representation called a bootleg score to encode the location of noteheads relative to staff lines, and present the data in an extremely simple format (2D binary images) to encourage rapid exploration and iteration. The dataset itself contains 40,000 62x64 bootleg score images for a 9-class recognition task, 100,000 62x64 bootleg score images for a 100-class recognition task, and 29,310 unlabeled variable-length bootleg score images for pretraining. The labeled data is presented in a form that mirrors MNIST images, in order to make it extremely easy to visualize, manipulate, and train models in an efficient manner. We include relevant information to connect each bootleg score image with its underlying raw sheet music image, and we scrape, organize, and compile metadata from IMSLP on all piano works to facilitate multimodal research and allow for convenient linking to other datasets. We release baseline results in a supervised and low-shot setting for future works to compare against, and we discuss open research questions that the PBSCR data is especially well suited to facilitate research on.

  • 3 authors
·
Jan 30, 2024

GETMusic: Generating Any Music Tracks with a Unified Representation and Diffusion Framework

Symbolic music generation aims to create musical notes, which can help users compose music, such as generating target instrumental tracks from scratch, or based on user-provided source tracks. Considering the diverse and flexible combination between source and target tracks, a unified model capable of generating any arbitrary tracks is of crucial necessity. Previous works fail to address this need due to inherent constraints in music representations and model architectures. To address this need, we propose a unified representation and diffusion framework named GETMusic (`GET' stands for GEnerate music Tracks), which includes a novel music representation named GETScore, and a diffusion model named GETDiff. GETScore represents notes as tokens and organizes them in a 2D structure, with tracks stacked vertically and progressing horizontally over time. During training, tracks are randomly selected as either the target or source. In the forward process, target tracks are corrupted by masking their tokens, while source tracks remain as ground truth. In the denoising process, GETDiff learns to predict the masked target tokens, conditioning on the source tracks. With separate tracks in GETScore and the non-autoregressive behavior of the model, GETMusic can explicitly control the generation of any target tracks from scratch or conditioning on source tracks. We conduct experiments on music generation involving six instrumental tracks, resulting in a total of 665 combinations. GETMusic provides high-quality results across diverse combinations and surpasses prior works proposed for some specific combinations.

  • 7 authors
·
May 18, 2023 2

VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos

We present a framework for learning to generate background music from video inputs. Unlike existing works that rely on symbolic musical annotations, which are limited in quantity and diversity, our method leverages large-scale web videos accompanied by background music. This enables our model to learn to generate realistic and diverse music. To accomplish this goal, we develop a generative video-music Transformer with a novel semantic video-music alignment scheme. Our model uses a joint autoregressive and contrastive learning objective, which encourages the generation of music aligned with high-level video content. We also introduce a novel video-beat alignment scheme to match the generated music beats with the low-level motions in the video. Lastly, to capture fine-grained visual cues in a video needed for realistic background music generation, we introduce a new temporal video encoder architecture, allowing us to efficiently process videos consisting of many densely sampled frames. We train our framework on our newly curated DISCO-MV dataset, consisting of 2.2M video-music samples, which is orders of magnitude larger than any prior datasets used for video music generation. Our method outperforms existing approaches on the DISCO-MV and MusicCaps datasets according to various music generation evaluation metrics, including human evaluation. Results are available at https://genjib.github.io/project_page/VMAs/index.html

  • 5 authors
·
Sep 11, 2024 2

Pictures Of MIDI: Controlled Music Generation via Graphical Prompts for Image-Based Diffusion Inpainting

Recent years have witnessed significant progress in generative models for music, featuring diverse architectures that balance output quality, diversity, speed, and user control. This study explores a user-friendly graphical interface enabling the drawing of masked regions for inpainting by an Hourglass Diffusion Transformer (HDiT) model trained on MIDI piano roll images. To enhance note generation in specified areas, masked regions can be "repainted" with extra noise. The non-latent HDiTs linear scaling with pixel count allows efficient generation in pixel space, providing intuitive and interpretable controls such as masking throughout the network and removing the need to operate in compressed latent spaces such as those provided by pretrained autoencoders. We demonstrate that, in addition to inpainting of melodies, accompaniment, and continuations, the use of repainting can help increase note density yielding musical structures closely matching user specifications such as rising, falling, or diverging melody and/or accompaniment, even when these lie outside the typical training data distribution. We achieve performance on par with prior results while operating at longer context windows, with no autoencoder, and can enable complex geometries for inpainting masks, increasing the options for machine-assisted composers to control the generated music.

  • 1 authors
·
Jul 1, 2024

MuChin: A Chinese Colloquial Description Benchmark for Evaluating Language Models in the Field of Music

The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced (https://github.com/CarlWangChina/MuChin/).

  • 9 authors
·
Feb 15, 2024

GRAM: Spatial general-purpose audio representation models for real-world applications

Although audio foundations models have seen great progress on a wide variety of tasks, their application in real-world acoustic environments with reverberation and noise has been less successful. Moreover, as audio foundation models are typically trained on dry, single-channel audio clips, the inherent spatial nature of real-world sound scenes is overlooked and tasks involving sound localization ruled out. To address these limitations, we propose GRAM: a General-purpose Real-world Audio Model utilizing a multi-channel masked auto-encoder approach to efficiently learn spatial audio representations from high-quality simulated real-world scenes. To evaluate the performance of GRAM and other audio foundation models in real-world sound scenes, we release Nat-HEAR: A naturalistic version of the HEAR benchmark suite comprising a simulated real-world version, as well as two new sound localization tasks. We show that the performance of GRAM surpasses all state-of-the-art self-supervised audio foundation models and speech models on both HEAR and Nat-HEAR, while using only a fraction of the training data. GRAM also showcases state-of-the-art localization performance, surpassing even supervised sound localization approaches, and can be flexibly applied either to a two-channel, binaural sound format or a four-channel, Ambisonics format. Validating GRAM's performance on real-world sound recordings demonstrates robust transfer to real-world scenes. Taken together, GRAM presents a significant advancement towards robust, spatial audio foundation models for real-world applications.

  • 3 authors
·
Jun 1

YuE: Scaling Open Foundation Models for Long-Form Music Generation

We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation

  • 57 authors
·
Mar 11 3

A Lightweight Instrument-Agnostic Model for Polyphonic Note Transcription and Multipitch Estimation

Automatic Music Transcription (AMT) has been recognized as a key enabling technology with a wide range of applications. Given the task's complexity, best results have typically been reported for systems focusing on specific settings, e.g. instrument-specific systems tend to yield improved results over instrument-agnostic methods. Similarly, higher accuracy can be obtained when only estimating frame-wise f_0 values and neglecting the harder note event detection. Despite their high accuracy, such specialized systems often cannot be deployed in the real-world. Storage and network constraints prohibit the use of multiple specialized models, while memory and run-time constraints limit their complexity. In this paper, we propose a lightweight neural network for musical instrument transcription, which supports polyphonic outputs and generalizes to a wide variety of instruments (including vocals). Our model is trained to jointly predict frame-wise onsets, multipitch and note activations, and we experimentally show that this multi-output structure improves the resulting frame-level note accuracy. Despite its simplicity, benchmark results show our system's note estimation to be substantially better than a comparable baseline, and its frame-level accuracy to be only marginally below those of specialized state-of-the-art AMT systems. With this work we hope to encourage the community to further investigate low-resource, instrument-agnostic AMT systems.

  • 5 authors
·
Mar 18, 2022

Exploring Adapter Design Tradeoffs for Low Resource Music Generation

Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.

  • 3 authors
·
Jun 26

Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model

Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.

  • 5 authors
·
Sep 4, 2024

Zero-Effort Image-to-Music Generation: An Interpretable RAG-based VLM Approach

Recently, Image-to-Music (I2M) generation has garnered significant attention, with potential applications in fields such as gaming, advertising, and multi-modal art creation. However, due to the ambiguous and subjective nature of I2M tasks, most end-to-end methods lack interpretability, leaving users puzzled about the generation results. Even methods based on emotion mapping face controversy, as emotion represents only a singular aspect of art. Additionally, most learning-based methods require substantial computational resources and large datasets for training, hindering accessibility for common users. To address these challenges, we propose the first Vision Language Model (VLM)-based I2M framework that offers high interpretability and low computational cost. Specifically, we utilize ABC notation to bridge the text and music modalities, enabling the VLM to generate music using natural language. We then apply multi-modal Retrieval-Augmented Generation (RAG) and self-refinement techniques to allow the VLM to produce high-quality music without external training. Furthermore, we leverage the generated motivations in text and the attention maps from the VLM to provide explanations for the generated results in both text and image modalities. To validate our method, we conduct both human studies and machine evaluations, where our method outperforms others in terms of music quality and music-image consistency, indicating promising results. Our code is available at https://github.com/RS2002/Image2Music .

  • 3 authors
·
Sep 26

The GigaMIDI Dataset with Features for Expressive Music Performance Detection

The Musical Instrument Digital Interface (MIDI), introduced in 1983, revolutionized music production by allowing computers and instruments to communicate efficiently. MIDI files encode musical instructions compactly, facilitating convenient music sharing. They benefit Music Information Retrieval (MIR), aiding in research on music understanding, computational musicology, and generative music. The GigaMIDI dataset contains over 1.4 million unique MIDI files, encompassing 1.8 billion MIDI note events and over 5.3 million MIDI tracks. GigaMIDI is currently the largest collection of symbolic music in MIDI format available for research purposes under fair dealing. Distinguishing between non-expressive and expressive MIDI tracks is challenging, as MIDI files do not inherently make this distinction. To address this issue, we introduce a set of innovative heuristics for detecting expressive music performance. These include the Distinctive Note Velocity Ratio (DNVR) heuristic, which analyzes MIDI note velocity; the Distinctive Note Onset Deviation Ratio (DNODR) heuristic, which examines deviations in note onset times; and the Note Onset Median Metric Level (NOMML) heuristic, which evaluates onset positions relative to metric levels. Our evaluation demonstrates these heuristics effectively differentiate between non-expressive and expressive MIDI tracks. Furthermore, after evaluation, we create the most substantial expressive MIDI dataset, employing our heuristic, NOMML. This curated iteration of GigaMIDI encompasses expressively-performed instrument tracks detected by NOMML, containing all General MIDI instruments, constituting 31% of the GigaMIDI dataset, totalling 1,655,649 tracks.

  • 6 authors
·
Feb 24

SLAP: Siamese Language-Audio Pretraining Without Negative Samples for Music Understanding

Joint embedding spaces have significantly advanced music understanding and generation by linking text and audio through multimodal contrastive learning. However, these approaches face large memory requirement limitations due to relying on large batch sizes to effectively utilize negative samples. Further, multimodal joint embedding spaces suffer from a modality gap wherein embeddings from different modalities lie in different manifolds of the embedding space. To address these challenges, we propose Siamese Language-Audio Pretraining (SLAP), a novel multimodal pretraining framework that allows learning powerful representations without negative samples. SLAP adapts the Bootstrap Your Own Latent (BYOL) paradigm for multimodal audio-text training, promoting scalability in training multimodal embedding spaces. We illustrate the ability of our model to learn meaningful relationships between music and text -- specifically, we show that SLAP outperforms CLAP on tasks such as text-music retrieval and zero-shot classification. We also observe competitive downstream performance on several MIR tasks, including with larger or supervised models (genre and instrument classification, auto-tagging). Additionally, our approach has attractive properties, such as a quantifiably reduced modality gap and improved robustness to batch size variations on retrieval performance. Finally, its novel formulation unlocks large-scale training on a single GPU through gradient accumulation.

  • 4 authors
·
Jun 21

Listen, Think, and Understand

The ability of artificial intelligence (AI) systems to perceive and comprehend audio signals is crucial for many applications. Although significant progress has been made in this area since the development of AudioSet, most existing models are designed to map audio inputs to pre-defined, discrete sound label sets. In contrast, humans possess the ability to not only classify sounds into coarse-grained categories, but also to listen to the details of the sounds, explain the reason for the predictions, think what the sound infers, and understand the scene and what action needs to be taken. Such capabilities beyond perception are not yet present in existing audio models. On the other hand, modern large language models (LLMs) exhibit emerging reasoning ability but they lack audio perception capabilities. Therefore, we ask the question: can we build an AI model that has both audio perception and a reasoning ability? In this paper, we propose a novel audio foundation model, called LTU (Listen, Think, and Understand). To train LTU, we created a new OpenAQA-5M dataset consisting of 1.9 million closed-ended and 3.7 million open-ended, diverse (audio, question, answer) tuples, and used an autoregressive training framework and a perception-to-understanding curriculum. LTU demonstrates strong performance and generalization ability on conventional audio tasks such as classification and captioning. Moreover, it exhibits remarkable reasoning and comprehension abilities in the audio domain. To the best of our knowledge, LTU is the first audio-enabled large language model that bridges audio perception with advanced reasoning.

  • 5 authors
·
May 18, 2023

Diff-V2M: A Hierarchical Conditional Diffusion Model with Explicit Rhythmic Modeling for Video-to-Music Generation

Video-to-music (V2M) generation aims to create music that aligns with visual content. However, two main challenges persist in existing methods: (1) the lack of explicit rhythm modeling hinders audiovisual temporal alignments; (2) effectively integrating various visual features to condition music generation remains non-trivial. To address these issues, we propose Diff-V2M, a general V2M framework based on a hierarchical conditional diffusion model, comprising two core components: visual feature extraction and conditional music generation. For rhythm modeling, we begin by evaluating several rhythmic representations, including low-resolution mel-spectrograms, tempograms, and onset detection functions (ODF), and devise a rhythmic predictor to infer them directly from videos. To ensure contextual and affective coherence, we also extract semantic and emotional features. All features are incorporated into the generator via a hierarchical cross-attention mechanism, where emotional features shape the affective tone via the first layer, while semantic and rhythmic features are fused in the second cross-attention layer. To enhance feature integration, we introduce timestep-aware fusion strategies, including feature-wise linear modulation (FiLM) and weighted fusion, allowing the model to adaptively balance semantic and rhythmic cues throughout the diffusion process. Extensive experiments identify low-resolution ODF as a more effective signal for modeling musical rhythm and demonstrate that Diff-V2M outperforms existing models on both in-domain and out-of-domain datasets, achieving state-of-the-art performance in terms of objective metrics and subjective comparisons. Demo and code are available at https://Tayjsl97.github.io/Diff-V2M-Demo/.

  • 7 authors
·
Nov 12

Towards Unified Music Emotion Recognition across Dimensional and Categorical Models

One of the most significant challenges in Music Emotion Recognition (MER) comes from the fact that emotion labels can be heterogeneous across datasets with regard to the emotion representation, including categorical (e.g., happy, sad) versus dimensional labels (e.g., valence-arousal). In this paper, we present a unified multitask learning framework that combines these two types of labels and is thus able to be trained on multiple datasets. This framework uses an effective input representation that combines musical features (i.e., key and chords) and MERT embeddings. Moreover, knowledge distillation is employed to transfer the knowledge of teacher models trained on individual datasets to a student model, enhancing its ability to generalize across multiple tasks. To validate our proposed framework, we conducted extensive experiments on a variety of datasets, including MTG-Jamendo, DEAM, PMEmo, and EmoMusic. According to our experimental results, the inclusion of musical features, multitask learning, and knowledge distillation significantly enhances performance. In particular, our model outperforms the state-of-the-art models, including the best-performing model from the MediaEval 2021 competition on the MTG-Jamendo dataset. Our work makes a significant contribution to MER by allowing the combination of categorical and dimensional emotion labels in one unified framework, thus enabling training across datasets.

  • 2 authors
·
Feb 6

PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs

The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs. Although application-focused developments, particularly in curating training data for specific capabilities e.g., audio reasoning, have progressed rapidly, the underlying mechanisms that govern efficient transfer of rich semantic representations from audio encoders to LLMs remain under-explored. We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries. This paper presents a systematic investigation on how architectural design choices can affect that. Beginning with a standard Pengi/LLaVA-style audio-LLM architecture, we propose and evaluate several modifications guided by hypotheses derived from mechanistic interpretability studies and LLM operational principles. Our experiments demonstrate that: (1) delaying audio integration until the LLM's initial layers establish textual context that enhances its ability to probe the audio representations for relevant information; (2) the LLM can proficiently probe audio representations exclusively through LLM layer's attention submodule, without requiring propagation to its Feed-Forward Network (FFN) submodule; (3) an efficiently integrated ensemble of diverse audio encoders provides richer, complementary representations, thereby broadening the LLM's capacity to probe a wider spectrum of audio information. All hypotheses are evaluated using an identical three-stage training curriculum on a dataset of 5.6 million audio-text pairs, ensuring controlled comparisons. Our final architecture, which incorporates all proposed modifications, achieves relative improvements from 10\% to 60\% over the baseline, validating our approach to optimizing cross-modal information transfer in audio-LLMs. Project page: https://ta012.github.io/PAL/

  • 7 authors
·
Jun 12

The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative Approach to Improve Transcription Accuracy

Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then concatenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on three different datasets: MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our U-net contain gridlike structures (not present in the baseline model) which implies that with the presence of the reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy.

  • 4 authors
·
Oct 19, 2020

Contrastive Learning of Musical Representations

While deep learning has enabled great advances in many areas of music, labeled music datasets remain especially hard, expensive, and time-consuming to create. In this work, we introduce SimCLR to the music domain and contribute a large chain of audio data augmentations to form a simple framework for self-supervised, contrastive learning of musical representations: CLMR. This approach works on raw time-domain music data and requires no labels to learn useful representations. We evaluate CLMR in the downstream task of music classification on the MagnaTagATune and Million Song datasets and present an ablation study to test which of our music-related innovations over SimCLR are most effective. A linear classifier trained on the proposed representations achieves a higher average precision than supervised models on the MagnaTagATune dataset, and performs comparably on the Million Song dataset. Moreover, we show that CLMR's representations are transferable using out-of-domain datasets, indicating that our method has strong generalisability in music classification. Lastly, we show that the proposed method allows data-efficient learning on smaller labeled datasets: we achieve an average precision of 33.1% despite using only 259 labeled songs in the MagnaTagATune dataset (1% of the full dataset) during linear evaluation. To foster reproducibility and future research on self-supervised learning in music, we publicly release the pre-trained models and the source code of all experiments of this paper.

  • 2 authors
·
Mar 16, 2021

Representation, Exploration and Recommendation of Music Playlists

Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.

  • 3 authors
·
Jul 1, 2019