|
|
from functools import partial |
|
|
|
|
|
import torch |
|
|
from torch import nn, einsum, Tensor |
|
|
from torch.nn import Module, ModuleList |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from models.bs_roformer.attend import Attend |
|
|
try: |
|
|
from models.bs_roformer.attend_sage import Attend as AttendSage |
|
|
except: |
|
|
pass |
|
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
from beartype.typing import Tuple, Optional, List, Callable |
|
|
from beartype import beartype |
|
|
|
|
|
from rotary_embedding_torch import RotaryEmbedding |
|
|
|
|
|
from einops import rearrange, pack, unpack |
|
|
from einops.layers.torch import Rearrange |
|
|
import torchaudio |
|
|
|
|
|
|
|
|
def exists(val): |
|
|
return val is not None |
|
|
|
|
|
|
|
|
def default(v, d): |
|
|
return v if exists(v) else d |
|
|
|
|
|
|
|
|
def pack_one(t, pattern): |
|
|
return pack([t], pattern) |
|
|
|
|
|
|
|
|
def unpack_one(t, ps, pattern): |
|
|
return unpack(t, ps, pattern)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def l2norm(t): |
|
|
return F.normalize(t, dim = -1, p = 2) |
|
|
|
|
|
|
|
|
class RMSNorm(Module): |
|
|
def __init__(self, dim): |
|
|
super().__init__() |
|
|
self.scale = dim ** 0.5 |
|
|
self.gamma = nn.Parameter(torch.ones(dim)) |
|
|
|
|
|
def forward(self, x): |
|
|
return F.normalize(x, dim=-1) * self.scale * self.gamma |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
mult=4, |
|
|
dropout=0. |
|
|
): |
|
|
super().__init__() |
|
|
dim_inner = int(dim * mult) |
|
|
self.net = nn.Sequential( |
|
|
RMSNorm(dim), |
|
|
nn.Linear(dim, dim_inner), |
|
|
nn.GELU(), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(dim_inner, dim), |
|
|
nn.Dropout(dropout) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.net(x) |
|
|
|
|
|
class Attention(Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
heads=8, |
|
|
dim_head=64, |
|
|
dropout=0., |
|
|
rotary_embed=None, |
|
|
flash=True, |
|
|
sage_attention=False, |
|
|
): |
|
|
super().__init__() |
|
|
self.heads = heads |
|
|
self.scale = dim_head ** -0.5 |
|
|
dim_inner = heads * dim_head |
|
|
|
|
|
self.rotary_embed = rotary_embed |
|
|
|
|
|
if sage_attention: |
|
|
self.attend = AttendSage(flash=flash, dropout=dropout) |
|
|
else: |
|
|
self.attend = Attend(flash=flash, dropout=dropout) |
|
|
|
|
|
self.norm = RMSNorm(dim) |
|
|
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False) |
|
|
|
|
|
self.to_gates = nn.Linear(dim, heads) |
|
|
|
|
|
self.to_out = nn.Sequential( |
|
|
nn.Linear(dim_inner, dim, bias=False), |
|
|
nn.Dropout(dropout) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.norm(x) |
|
|
|
|
|
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads) |
|
|
|
|
|
if exists(self.rotary_embed): |
|
|
q = self.rotary_embed.rotate_queries_or_keys(q) |
|
|
k = self.rotary_embed.rotate_queries_or_keys(k) |
|
|
|
|
|
out = self.attend(q, k, v) |
|
|
|
|
|
gates = self.to_gates(x) |
|
|
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid() |
|
|
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
|
return self.to_out(out) |
|
|
|
|
|
|
|
|
class LinearAttention(Module): |
|
|
""" |
|
|
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al. |
|
|
""" |
|
|
|
|
|
@beartype |
|
|
def __init__( |
|
|
self, |
|
|
*, |
|
|
dim, |
|
|
dim_head=32, |
|
|
heads=8, |
|
|
scale=8, |
|
|
flash=False, |
|
|
dropout=0., |
|
|
sage_attention=False, |
|
|
): |
|
|
super().__init__() |
|
|
dim_inner = dim_head * heads |
|
|
self.norm = RMSNorm(dim) |
|
|
|
|
|
self.to_qkv = nn.Sequential( |
|
|
nn.Linear(dim, dim_inner * 3, bias=False), |
|
|
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads) |
|
|
) |
|
|
|
|
|
self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) |
|
|
|
|
|
if sage_attention: |
|
|
self.attend = AttendSage( |
|
|
scale=scale, |
|
|
dropout=dropout, |
|
|
flash=flash |
|
|
) |
|
|
else: |
|
|
self.attend = Attend( |
|
|
scale=scale, |
|
|
dropout=dropout, |
|
|
flash=flash |
|
|
) |
|
|
|
|
|
self.to_out = nn.Sequential( |
|
|
Rearrange('b h d n -> b n (h d)'), |
|
|
nn.Linear(dim_inner, dim, bias=False) |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x |
|
|
): |
|
|
x = self.norm(x) |
|
|
|
|
|
q, k, v = self.to_qkv(x) |
|
|
|
|
|
q, k = map(l2norm, (q, k)) |
|
|
q = q * self.temperature.exp() |
|
|
|
|
|
out = self.attend(q, k, v) |
|
|
|
|
|
return self.to_out(out) |
|
|
|
|
|
class Transformer(Module): |
|
|
def __init__( |
|
|
self, |
|
|
*, |
|
|
dim, |
|
|
depth, |
|
|
dim_head=64, |
|
|
heads=8, |
|
|
attn_dropout=0., |
|
|
ff_dropout=0., |
|
|
ff_mult=4, |
|
|
norm_output=True, |
|
|
rotary_embed=None, |
|
|
flash_attn=True, |
|
|
linear_attn=False, |
|
|
sage_attention=False, |
|
|
): |
|
|
super().__init__() |
|
|
self.layers = ModuleList([]) |
|
|
|
|
|
for _ in range(depth): |
|
|
if linear_attn: |
|
|
attn = LinearAttention( |
|
|
dim=dim, |
|
|
dim_head=dim_head, |
|
|
heads=heads, |
|
|
dropout=attn_dropout, |
|
|
flash=flash_attn, |
|
|
sage_attention=sage_attention |
|
|
) |
|
|
else: |
|
|
attn = Attention( |
|
|
dim=dim, |
|
|
dim_head=dim_head, |
|
|
heads=heads, |
|
|
dropout=attn_dropout, |
|
|
rotary_embed=rotary_embed, |
|
|
flash=flash_attn, |
|
|
sage_attention=sage_attention |
|
|
) |
|
|
|
|
|
self.layers.append(ModuleList([ |
|
|
attn, |
|
|
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) |
|
|
])) |
|
|
|
|
|
self.norm = RMSNorm(dim) if norm_output else nn.Identity() |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
for attn, ff in self.layers: |
|
|
x = attn(x) + x |
|
|
x = ff(x) + x |
|
|
|
|
|
return self.norm(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BandSplit(Module): |
|
|
@beartype |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
dim_inputs: Tuple[int, ...] |
|
|
): |
|
|
super().__init__() |
|
|
self.dim_inputs = dim_inputs |
|
|
self.to_features = ModuleList([]) |
|
|
|
|
|
for dim_in in dim_inputs: |
|
|
net = nn.Sequential( |
|
|
RMSNorm(dim_in), |
|
|
nn.Linear(dim_in, dim) |
|
|
) |
|
|
|
|
|
self.to_features.append(net) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = x.split(self.dim_inputs, dim=-1) |
|
|
|
|
|
outs = [] |
|
|
for split_input, to_feature in zip(x, self.to_features): |
|
|
split_output = to_feature(split_input) |
|
|
outs.append(split_output) |
|
|
|
|
|
x = torch.stack(outs, dim=-2) |
|
|
|
|
|
return x |
|
|
|
|
|
class Conv(nn.Module): |
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): |
|
|
super().__init__() |
|
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) |
|
|
self.bn = nn.InstanceNorm2d(c2, affine=True, eps=1e-8) |
|
|
self.act = nn.SiLU() if act else nn.Identity() |
|
|
|
|
|
def forward(self, x): |
|
|
return self.act(self.bn(self.conv(x))) |
|
|
|
|
|
def autopad(k, p=None): |
|
|
if p is None: |
|
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] |
|
|
return p |
|
|
|
|
|
class DSConv(nn.Module): |
|
|
def __init__(self, c1, c2, k=3, s=1, p=None, act=True): |
|
|
super().__init__() |
|
|
self.dwconv = nn.Conv2d(c1, c1, k, s, autopad(k, p), groups=c1, bias=False) |
|
|
self.pwconv = nn.Conv2d(c1, c2, 1, 1, 0, bias=False) |
|
|
self.bn = nn.InstanceNorm2d(c2, affine=True, eps=1e-8) |
|
|
self.act = nn.SiLU() if act else nn.Identity() |
|
|
|
|
|
def forward(self, x): |
|
|
return self.act(self.bn(self.pwconv(self.dwconv(x)))) |
|
|
|
|
|
class DS_Bottleneck(nn.Module): |
|
|
def __init__(self, c1, c2, k=3, shortcut=True): |
|
|
super().__init__() |
|
|
c_ = c1 |
|
|
self.dsconv1 = DSConv(c1, c_, k=3, s=1) |
|
|
self.dsconv2 = DSConv(c_, c2, k=k, s=1) |
|
|
self.shortcut = shortcut and c1 == c2 |
|
|
|
|
|
def forward(self, x): |
|
|
return x + self.dsconv2(self.dsconv1(x)) if self.shortcut else self.dsconv2(self.dsconv1(x)) |
|
|
|
|
|
class DS_C3k(nn.Module): |
|
|
def __init__(self, c1, c2, n=1, k=3, e=0.5): |
|
|
super().__init__() |
|
|
c_ = int(c2 * e) |
|
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
|
self.cv3 = Conv(2 * c_, c2, 1, 1) |
|
|
self.m = nn.Sequential(*[DS_Bottleneck(c_, c_, k=k, shortcut=True) for _ in range(n)]) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) |
|
|
|
|
|
class DS_C3k2(nn.Module): |
|
|
def __init__(self, c1, c2, n=1, k=3, e=0.5): |
|
|
super().__init__() |
|
|
c_ = int(c2 * e) |
|
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
|
self.m = DS_C3k(c_, c_, n=n, k=k, e=1.0) |
|
|
self.cv2 = Conv(c_, c2, 1, 1) |
|
|
|
|
|
def forward(self, x): |
|
|
x_ = self.cv1(x) |
|
|
x_ = self.m(x_) |
|
|
return self.cv2(x_) |
|
|
|
|
|
class AdaptiveHyperedgeGeneration(nn.Module): |
|
|
def __init__(self, in_channels, num_hyperedges, num_heads=8): |
|
|
super().__init__() |
|
|
self.num_hyperedges = num_hyperedges |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = in_channels // num_heads |
|
|
|
|
|
self.global_proto = nn.Parameter(torch.randn(num_hyperedges, in_channels)) |
|
|
|
|
|
self.context_mapper = nn.Linear(2 * in_channels, num_hyperedges * in_channels, bias=False) |
|
|
|
|
|
self.query_proj = nn.Linear(in_channels, in_channels, bias=False) |
|
|
|
|
|
self.scale = self.head_dim ** -0.5 |
|
|
|
|
|
def forward(self, x): |
|
|
B, N, C = x.shape |
|
|
|
|
|
f_avg = F.adaptive_avg_pool1d(x.permute(0, 2, 1), 1).squeeze(-1) |
|
|
f_max = F.adaptive_max_pool1d(x.permute(0, 2, 1), 1).squeeze(-1) |
|
|
f_ctx = torch.cat((f_avg, f_max), dim=1) |
|
|
|
|
|
delta_P = self.context_mapper(f_ctx).view(B, self.num_hyperedges, C) |
|
|
P = self.global_proto.unsqueeze(0) + delta_P |
|
|
|
|
|
z = self.query_proj(x) |
|
|
|
|
|
z = z.view(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) |
|
|
|
|
|
P = P.view(B, self.num_hyperedges, self.num_heads, self.head_dim).permute(0, 2, 3, 1) |
|
|
|
|
|
sim = (z @ P) * self.scale |
|
|
|
|
|
s_bar = sim.mean(dim=1) |
|
|
|
|
|
A = F.softmax(s_bar.permute(0, 2, 1), dim=-1) |
|
|
|
|
|
return A |
|
|
|
|
|
class HypergraphConvolution(nn.Module): |
|
|
def __init__(self, in_channels, out_channels): |
|
|
super().__init__() |
|
|
self.W_e = nn.Linear(in_channels, in_channels, bias=False) |
|
|
self.W_v = nn.Linear(in_channels, out_channels, bias=False) |
|
|
self.act = nn.SiLU() |
|
|
|
|
|
def forward(self, x, A): |
|
|
f_m = torch.bmm(A, x) |
|
|
f_m = self.act(self.W_e(f_m)) |
|
|
|
|
|
x_out = torch.bmm(A.transpose(1, 2), f_m) |
|
|
x_out = self.act(self.W_v(x_out)) |
|
|
|
|
|
return x + x_out |
|
|
|
|
|
class AdaptiveHypergraphComputation(nn.Module): |
|
|
def __init__(self, in_channels, out_channels, num_hyperedges=8, num_heads=8): |
|
|
super().__init__() |
|
|
self.adaptive_hyperedge_gen = AdaptiveHyperedgeGeneration( |
|
|
in_channels, num_hyperedges, num_heads |
|
|
) |
|
|
self.hypergraph_conv = HypergraphConvolution(in_channels, out_channels) |
|
|
|
|
|
def forward(self, x): |
|
|
B, C, H, W = x.shape |
|
|
x_flat = x.flatten(2).permute(0, 2, 1) |
|
|
|
|
|
A = self.adaptive_hyperedge_gen(x_flat) |
|
|
|
|
|
x_out_flat = self.hypergraph_conv(x_flat, A) |
|
|
|
|
|
x_out = x_out_flat.permute(0, 2, 1).view(B, -1, H, W) |
|
|
return x_out |
|
|
|
|
|
class C3AH(nn.Module): |
|
|
def __init__(self, c1, c2, num_hyperedges=8, num_heads=8, e=0.5): |
|
|
super().__init__() |
|
|
c_ = int(c1 * e) |
|
|
self.cv1 = Conv(c1, c_, 1, 1) |
|
|
self.cv2 = Conv(c1, c_, 1, 1) |
|
|
self.ahc = AdaptiveHypergraphComputation( |
|
|
c_, c_, num_hyperedges, num_heads |
|
|
) |
|
|
self.cv3 = Conv(2 * c_, c2, 1, 1) |
|
|
|
|
|
def forward(self, x): |
|
|
x_lateral = self.cv1(x) |
|
|
x_ahc = self.ahc(self.cv2(x)) |
|
|
return self.cv3(torch.cat((x_ahc, x_lateral), dim=1)) |
|
|
|
|
|
class HyperACE(nn.Module): |
|
|
def __init__(self, in_channels: List[int], out_channels: int, |
|
|
num_hyperedges=8, num_heads=8, k=2, l=1, c_h=0.5, c_l=0.25): |
|
|
super().__init__() |
|
|
|
|
|
c2, c3, c4, c5 = in_channels |
|
|
c_mid = c4 |
|
|
|
|
|
self.fuse_conv = Conv(c2 + c3 + c4 + c5, c_mid, 1, 1) |
|
|
|
|
|
self.c_h = int(c_mid * c_h) |
|
|
self.c_l = int(c_mid * c_l) |
|
|
self.c_s = c_mid - self.c_h - self.c_l |
|
|
assert self.c_s > 0, "Channel split error" |
|
|
|
|
|
self.high_order_branch = nn.ModuleList( |
|
|
[C3AH(self.c_h, self.c_h, num_hyperedges, num_heads, e=1.0) for _ in range(k)] |
|
|
) |
|
|
self.high_order_fuse = Conv(self.c_h * k, self.c_h, 1, 1) |
|
|
|
|
|
self.low_order_branch = nn.Sequential( |
|
|
*[DS_C3k(self.c_l, self.c_l, n=1, k=3, e=1.0) for _ in range(l)] |
|
|
) |
|
|
|
|
|
self.final_fuse = Conv(self.c_h + self.c_l + self.c_s, out_channels, 1, 1) |
|
|
|
|
|
def forward(self, x: List[torch.Tensor]) -> torch.Tensor: |
|
|
B2, B3, B4, B5 = x |
|
|
|
|
|
B, _, H4, W4 = B4.shape |
|
|
|
|
|
B2_resized = F.interpolate(B2, size=(H4, W4), mode='bilinear', align_corners=False) |
|
|
B3_resized = F.interpolate(B3, size=(H4, W4), mode='bilinear', align_corners=False) |
|
|
B5_resized = F.interpolate(B5, size=(H4, W4), mode='bilinear', align_corners=False) |
|
|
|
|
|
x_b = self.fuse_conv(torch.cat((B2_resized, B3_resized, B4, B5_resized), dim=1)) |
|
|
|
|
|
x_h, x_l, x_s = torch.split(x_b, [self.c_h, self.c_l, self.c_s], dim=1) |
|
|
|
|
|
x_h_outs = [m(x_h) for m in self.high_order_branch] |
|
|
x_h_fused = self.high_order_fuse(torch.cat(x_h_outs, dim=1)) |
|
|
|
|
|
x_l_out = self.low_order_branch(x_l) |
|
|
|
|
|
y = self.final_fuse(torch.cat((x_h_fused, x_l_out, x_s), dim=1)) |
|
|
|
|
|
return y |
|
|
|
|
|
class GatedFusion(nn.Module): |
|
|
def __init__(self, in_channels): |
|
|
super().__init__() |
|
|
self.gamma = nn.Parameter(torch.zeros(1, in_channels, 1, 1)) |
|
|
|
|
|
def forward(self, f_in, h): |
|
|
if f_in.shape[1] != h.shape[1]: |
|
|
raise ValueError(f"Channel mismatch: f_in={f_in.shape}, h={h.shape}") |
|
|
return f_in + self.gamma * h |
|
|
|
|
|
|
|
|
class Backbone(nn.Module): |
|
|
def __init__(self, in_channels=256, base_channels=64, base_depth=3): |
|
|
super().__init__() |
|
|
c = base_channels |
|
|
c2 = base_channels |
|
|
c3 = 256 |
|
|
c4 = 384 |
|
|
c5 = 512 |
|
|
c6 = 768 |
|
|
|
|
|
self.stem = DSConv(in_channels, c2, k=3, s=(2, 1), p=1) |
|
|
|
|
|
self.p2 = nn.Sequential( |
|
|
DSConv(c2, c3, k=3, s=(2, 1), p=1), |
|
|
DS_C3k2(c3, c3, n=base_depth) |
|
|
) |
|
|
|
|
|
self.p3 = nn.Sequential( |
|
|
DSConv(c3, c4, k=3, s=(2, 1), p=1), |
|
|
DS_C3k2(c4, c4, n=base_depth*2) |
|
|
) |
|
|
|
|
|
self.p4 = nn.Sequential( |
|
|
DSConv(c4, c5, k=3, s=(2, 1), p=1), |
|
|
DS_C3k2(c5, c5, n=base_depth*2) |
|
|
) |
|
|
|
|
|
self.p5 = nn.Sequential( |
|
|
DSConv(c5, c6, k=3, s=(2, 1), p=1), |
|
|
DS_C3k2(c6, c6, n=base_depth) |
|
|
) |
|
|
|
|
|
self.out_channels = [c3, c4, c5, c6] |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.stem(x) |
|
|
x2 = self.p2(x) |
|
|
x3 = self.p3(x2) |
|
|
x4 = self.p4(x3) |
|
|
x5 = self.p5(x4) |
|
|
return [x2, x3, x4, x5] |
|
|
|
|
|
class Decoder(nn.Module): |
|
|
def __init__(self, encoder_channels: List[int], hyperace_out_c: int, decoder_channels: List[int]): |
|
|
super().__init__() |
|
|
c_p2, c_p3, c_p4, c_p5 = encoder_channels |
|
|
c_d2, c_d3, c_d4, c_d5 = decoder_channels |
|
|
|
|
|
self.h_to_d5 = Conv(hyperace_out_c, c_d5, 1, 1) |
|
|
self.h_to_d4 = Conv(hyperace_out_c, c_d4, 1, 1) |
|
|
self.h_to_d3 = Conv(hyperace_out_c, c_d3, 1, 1) |
|
|
self.h_to_d2 = Conv(hyperace_out_c, c_d2, 1, 1) |
|
|
|
|
|
self.fusion_d5 = GatedFusion(c_d5) |
|
|
self.fusion_d4 = GatedFusion(c_d4) |
|
|
self.fusion_d3 = GatedFusion(c_d3) |
|
|
self.fusion_d2 = GatedFusion(c_d2) |
|
|
|
|
|
self.skip_p5 = Conv(c_p5, c_d5, 1, 1) |
|
|
self.skip_p4 = Conv(c_p4, c_d4, 1, 1) |
|
|
self.skip_p3 = Conv(c_p3, c_d3, 1, 1) |
|
|
self.skip_p2 = Conv(c_p2, c_d2, 1, 1) |
|
|
|
|
|
self.up_d5 = DS_C3k2(c_d5, c_d4, n=1) |
|
|
self.up_d4 = DS_C3k2(c_d4, c_d3, n=1) |
|
|
self.up_d3 = DS_C3k2(c_d3, c_d2, n=1) |
|
|
|
|
|
self.final_d2 = DS_C3k2(c_d2, c_d2, n=1) |
|
|
|
|
|
def forward(self, enc_feats: List[torch.Tensor], h_ace: torch.Tensor): |
|
|
p2, p3, p4, p5 = enc_feats |
|
|
|
|
|
d5 = self.skip_p5(p5) |
|
|
h_d5 = self.h_to_d5(F.interpolate(h_ace, size=d5.shape[2:], mode='bilinear')) |
|
|
d5 = self.fusion_d5(d5, h_d5) |
|
|
|
|
|
d5_up = F.interpolate(d5, size=p4.shape[2:], mode='bilinear') |
|
|
d4_skip = self.skip_p4(p4) |
|
|
d4 = self.up_d5(d5_up) + d4_skip |
|
|
|
|
|
h_d4 = self.h_to_d4(F.interpolate(h_ace, size=d4.shape[2:], mode='bilinear')) |
|
|
d4 = self.fusion_d4(d4, h_d4) |
|
|
|
|
|
d4_up = F.interpolate(d4, size=p3.shape[2:], mode='bilinear') |
|
|
d3_skip = self.skip_p3(p3) |
|
|
d3 = self.up_d4(d4_up) + d3_skip |
|
|
|
|
|
h_d3 = self.h_to_d3(F.interpolate(h_ace, size=d3.shape[2:], mode='bilinear')) |
|
|
d3 = self.fusion_d3(d3, h_d3) |
|
|
|
|
|
d3_up = F.interpolate(d3, size=p2.shape[2:], mode='bilinear') |
|
|
d2_skip = self.skip_p2(p2) |
|
|
d2 = self.up_d3(d3_up) + d2_skip |
|
|
|
|
|
h_d2 = self.h_to_d2(F.interpolate(h_ace, size=d2.shape[2:], mode='bilinear')) |
|
|
d2 = self.fusion_d2(d2, h_d2) |
|
|
|
|
|
d2_final = self.final_d2(d2) |
|
|
|
|
|
return d2_final |
|
|
|
|
|
class FreqPixelShuffle(nn.Module): |
|
|
def __init__(self, in_channels, out_channels, scale=2): |
|
|
super().__init__() |
|
|
self.scale = scale |
|
|
self.conv = DSConv(in_channels, out_channels * scale, k=3, s=1, p=1) |
|
|
self.act = nn.SiLU() |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.conv(x) |
|
|
B, C_r, H, W = x.shape |
|
|
out_c = C_r // self.scale |
|
|
|
|
|
x = x.view(B, out_c, self.scale, H, W) |
|
|
|
|
|
x = x.permute(0, 1, 3, 4, 2).contiguous() |
|
|
x = x.view(B, out_c, H, W * self.scale) |
|
|
|
|
|
return x |
|
|
|
|
|
class ProgressiveUpsampleHead(nn.Module): |
|
|
def __init__(self, in_channels, out_channels, target_bins=1025): |
|
|
super().__init__() |
|
|
self.target_bins = target_bins |
|
|
|
|
|
c = in_channels |
|
|
|
|
|
self.block1 = FreqPixelShuffle(c, c, scale=2) |
|
|
self.block2 = FreqPixelShuffle(c, c // 2, scale=2) |
|
|
self.block3 = FreqPixelShuffle(c // 2, c // 2, scale=2) |
|
|
self.block4 = FreqPixelShuffle(c // 2, c // 4, scale=2) |
|
|
|
|
|
self.final_conv = nn.Conv2d(c // 4, out_channels, kernel_size=1, bias=False) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = self.block1(x) |
|
|
x = self.block2(x) |
|
|
x = self.block3(x) |
|
|
x = self.block4(x) |
|
|
|
|
|
if x.shape[-1] != self.target_bins: |
|
|
x = F.interpolate(x, size=(x.shape[2], self.target_bins), mode='bilinear', align_corners=False) |
|
|
|
|
|
x = self.final_conv(x) |
|
|
return x |
|
|
|
|
|
class SegmModel(nn.Module): |
|
|
def __init__(self, in_bands=62, in_dim=256, out_bins=1025, out_channels=4, |
|
|
base_channels=64, base_depth=2, |
|
|
num_hyperedges=16, num_heads=8): |
|
|
super().__init__() |
|
|
|
|
|
self.backbone = Backbone(in_channels=in_dim, base_channels=base_channels, base_depth=base_depth) |
|
|
enc_channels = self.backbone.out_channels |
|
|
c2, c3, c4, c5 = enc_channels |
|
|
|
|
|
hyperace_in_channels = enc_channels |
|
|
hyperace_out_channels = c4 |
|
|
self.hyperace = HyperACE( |
|
|
hyperace_in_channels, hyperace_out_channels, |
|
|
num_hyperedges, num_heads, k=3, l=2 |
|
|
) |
|
|
|
|
|
decoder_channels = [c2, c3, c4, c5] |
|
|
self.decoder = Decoder( |
|
|
enc_channels, hyperace_out_channels, decoder_channels |
|
|
) |
|
|
|
|
|
self.upsample_head = ProgressiveUpsampleHead( |
|
|
in_channels=decoder_channels[0], |
|
|
out_channels=out_channels, |
|
|
target_bins=out_bins |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
H, W = x.shape[2:] |
|
|
|
|
|
enc_feats = self.backbone(x) |
|
|
|
|
|
h_ace_feats = self.hyperace(enc_feats) |
|
|
|
|
|
dec_feat = self.decoder(enc_feats, h_ace_feats) |
|
|
|
|
|
feat_time_restored = F.interpolate(dec_feat, size=(H, dec_feat.shape[-1]), mode='bilinear', align_corners=False) |
|
|
|
|
|
out = self.upsample_head(feat_time_restored) |
|
|
|
|
|
return out |
|
|
def MLP( |
|
|
dim_in, |
|
|
dim_out, |
|
|
dim_hidden=None, |
|
|
depth=1, |
|
|
activation=nn.Tanh |
|
|
): |
|
|
dim_hidden = default(dim_hidden, dim_in) |
|
|
|
|
|
net = [] |
|
|
dims = (dim_in, *((dim_hidden,) * (depth - 1)), dim_out) |
|
|
|
|
|
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])): |
|
|
is_last = ind == (len(dims) - 2) |
|
|
|
|
|
net.append(nn.Linear(layer_dim_in, layer_dim_out)) |
|
|
|
|
|
if is_last: |
|
|
continue |
|
|
|
|
|
net.append(activation()) |
|
|
|
|
|
return nn.Sequential(*net) |
|
|
|
|
|
class MaskEstimator(Module): |
|
|
@beartype |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
dim_inputs: Tuple[int, ...], |
|
|
depth, |
|
|
mlp_expansion_factor=4 |
|
|
): |
|
|
super().__init__() |
|
|
self.dim_inputs = dim_inputs |
|
|
self.to_freqs = ModuleList([]) |
|
|
dim_hidden = dim * mlp_expansion_factor |
|
|
|
|
|
for dim_in in dim_inputs: |
|
|
net = [] |
|
|
|
|
|
mlp = nn.Sequential( |
|
|
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), |
|
|
nn.GLU(dim=-1) |
|
|
) |
|
|
|
|
|
self.to_freqs.append(mlp) |
|
|
|
|
|
self.segm = SegmModel(in_bands=len(dim_inputs), in_dim=dim, out_bins=sum(dim_inputs)//4) |
|
|
|
|
|
def forward(self, x): |
|
|
y = rearrange(x, 'b t f c -> b c t f') |
|
|
y = self.segm(y) |
|
|
y = rearrange(y, 'b c t f -> b t (f c)') |
|
|
|
|
|
x = x.unbind(dim=-2) |
|
|
|
|
|
outs = [] |
|
|
|
|
|
for band_features, mlp in zip(x, self.to_freqs): |
|
|
freq_out = mlp(band_features) |
|
|
outs.append(freq_out) |
|
|
|
|
|
return torch.cat(outs, dim=-1) + y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_FREQS_PER_BANDS = ( |
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
|
2, 2, 2, 2, |
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
|
12, 12, 12, 12, 12, 12, 12, 12, |
|
|
24, 24, 24, 24, 24, 24, 24, 24, |
|
|
48, 48, 48, 48, 48, 48, 48, 48, |
|
|
128, 129, |
|
|
) |
|
|
|
|
|
class BSRoformer(Module): |
|
|
|
|
|
@beartype |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
*, |
|
|
depth, |
|
|
stereo=False, |
|
|
num_stems=1, |
|
|
time_transformer_depth=2, |
|
|
freq_transformer_depth=2, |
|
|
linear_transformer_depth=0, |
|
|
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS, |
|
|
|
|
|
dim_head=64, |
|
|
heads=8, |
|
|
attn_dropout=0., |
|
|
ff_dropout=0., |
|
|
flash_attn=True, |
|
|
dim_freqs_in=1025, |
|
|
stft_n_fft=2048, |
|
|
stft_hop_length=512, |
|
|
|
|
|
stft_win_length=2048, |
|
|
stft_normalized=False, |
|
|
stft_window_fn: Optional[Callable] = None, |
|
|
mask_estimator_depth=2, |
|
|
multi_stft_resolution_loss_weight=1., |
|
|
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256), |
|
|
multi_stft_hop_size=147, |
|
|
multi_stft_normalized=False, |
|
|
multi_stft_window_fn: Callable = torch.hann_window, |
|
|
mlp_expansion_factor=4, |
|
|
use_torch_checkpoint=False, |
|
|
skip_connection=False, |
|
|
sage_attention=False, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.stereo = stereo |
|
|
self.audio_channels = 2 if stereo else 1 |
|
|
self.num_stems = num_stems |
|
|
self.use_torch_checkpoint = use_torch_checkpoint |
|
|
self.skip_connection = skip_connection |
|
|
|
|
|
self.layers = ModuleList([]) |
|
|
|
|
|
if sage_attention: |
|
|
print("Use Sage Attention") |
|
|
|
|
|
transformer_kwargs = dict( |
|
|
dim=dim, |
|
|
heads=heads, |
|
|
dim_head=dim_head, |
|
|
attn_dropout=attn_dropout, |
|
|
ff_dropout=ff_dropout, |
|
|
flash_attn=flash_attn, |
|
|
norm_output=False, |
|
|
sage_attention=sage_attention, |
|
|
) |
|
|
|
|
|
time_rotary_embed = RotaryEmbedding(dim=dim_head) |
|
|
freq_rotary_embed = RotaryEmbedding(dim=dim_head) |
|
|
|
|
|
for _ in range(depth): |
|
|
tran_modules = [] |
|
|
tran_modules.append( |
|
|
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs) |
|
|
) |
|
|
tran_modules.append( |
|
|
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs) |
|
|
) |
|
|
self.layers.append(nn.ModuleList(tran_modules)) |
|
|
|
|
|
self.final_norm = RMSNorm(dim) |
|
|
|
|
|
self.stft_kwargs = dict( |
|
|
n_fft=stft_n_fft, |
|
|
hop_length=stft_hop_length, |
|
|
win_length=stft_win_length, |
|
|
normalized=stft_normalized |
|
|
) |
|
|
|
|
|
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length) |
|
|
|
|
|
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_win_length), return_complex=True).shape[1] |
|
|
|
|
|
assert len(freqs_per_bands) > 1 |
|
|
assert sum( |
|
|
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}' |
|
|
|
|
|
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands) |
|
|
|
|
|
self.band_split = BandSplit( |
|
|
dim=dim, |
|
|
dim_inputs=freqs_per_bands_with_complex |
|
|
) |
|
|
|
|
|
self.mask_estimators = nn.ModuleList([]) |
|
|
|
|
|
for _ in range(num_stems): |
|
|
mask_estimator = MaskEstimator( |
|
|
dim=dim, |
|
|
dim_inputs=freqs_per_bands_with_complex, |
|
|
depth=mask_estimator_depth, |
|
|
mlp_expansion_factor=mlp_expansion_factor, |
|
|
) |
|
|
|
|
|
self.mask_estimators.append(mask_estimator) |
|
|
|
|
|
|
|
|
|
|
|
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight |
|
|
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes |
|
|
self.multi_stft_n_fft = stft_n_fft |
|
|
self.multi_stft_window_fn = multi_stft_window_fn |
|
|
|
|
|
self.multi_stft_kwargs = dict( |
|
|
hop_length=multi_stft_hop_size, |
|
|
normalized=multi_stft_normalized |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
raw_audio, |
|
|
target=None, |
|
|
return_loss_breakdown=False |
|
|
): |
|
|
""" |
|
|
einops |
|
|
|
|
|
b - batch |
|
|
f - freq |
|
|
t - time |
|
|
s - audio channel (1 for mono, 2 for stereo) |
|
|
n - number of 'stems' |
|
|
c - complex (2) |
|
|
d - feature dimension |
|
|
""" |
|
|
|
|
|
device = raw_audio.device |
|
|
|
|
|
|
|
|
x_is_mps = True if device.type == "mps" else False |
|
|
|
|
|
if raw_audio.ndim == 2: |
|
|
raw_audio = rearrange(raw_audio, 'b t -> b 1 t') |
|
|
|
|
|
channels = raw_audio.shape[1] |
|
|
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)' |
|
|
|
|
|
|
|
|
|
|
|
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t') |
|
|
|
|
|
stft_window = self.stft_window_fn(device=device) |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True) |
|
|
except: |
|
|
stft_repr = torch.stft(raw_audio.cpu() if x_is_mps else raw_audio, **self.stft_kwargs, |
|
|
window=stft_window.cpu() if x_is_mps else stft_window, return_complex=True).to( |
|
|
device) |
|
|
stft_repr = torch.view_as_real(stft_repr) |
|
|
|
|
|
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c') |
|
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c') |
|
|
|
|
|
x = rearrange(stft_repr, 'b f t c -> b t (f c)') |
|
|
|
|
|
|
|
|
x = self.band_split(x) |
|
|
|
|
|
|
|
|
|
|
|
for i, transformer_block in enumerate(self.layers): |
|
|
|
|
|
|
|
|
time_transformer, freq_transformer = transformer_block |
|
|
|
|
|
|
|
|
x = rearrange(x, 'b t f d -> b f t d') |
|
|
x, ps = pack([x], '* t d') |
|
|
|
|
|
|
|
|
x = time_transformer(x) |
|
|
|
|
|
x, = unpack(x, ps, '* t d') |
|
|
x = rearrange(x, 'b f t d -> b t f d') |
|
|
x, ps = pack([x], '* f d') |
|
|
|
|
|
|
|
|
x = freq_transformer(x) |
|
|
|
|
|
x, = unpack(x, ps, '* f d') |
|
|
|
|
|
|
|
|
x = self.final_norm(x) |
|
|
|
|
|
num_stems = len(self.mask_estimators) |
|
|
|
|
|
|
|
|
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1) |
|
|
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2) |
|
|
|
|
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c') |
|
|
|
|
|
stft_repr = torch.view_as_complex(stft_repr) |
|
|
mask = torch.view_as_complex(mask) |
|
|
|
|
|
stft_repr = stft_repr * mask |
|
|
|
|
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels) |
|
|
|
|
|
try: |
|
|
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=raw_audio.shape[-1]) |
|
|
except: |
|
|
recon_audio = torch.istft(stft_repr.cpu() if x_is_mps else stft_repr, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=False, length=raw_audio.shape[-1]).to(device) |
|
|
|
|
|
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems) |
|
|
|
|
|
if num_stems == 1: |
|
|
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t') |
|
|
|
|
|
|
|
|
|
|
|
if not exists(target): |
|
|
return recon_audio |
|
|
|
|
|
if self.num_stems > 1: |
|
|
assert target.ndim == 4 and target.shape[1] == self.num_stems |
|
|
|
|
|
if target.ndim == 2: |
|
|
target = rearrange(target, '... t -> ... 1 t') |
|
|
|
|
|
target = target[..., :recon_audio.shape[-1]] |
|
|
|
|
|
loss = F.l1_loss(recon_audio, target) |
|
|
|
|
|
multi_stft_resolution_loss = 0. |
|
|
|
|
|
for window_size in self.multi_stft_resolutions_window_sizes: |
|
|
res_stft_kwargs = dict( |
|
|
n_fft=max(window_size, self.multi_stft_n_fft), |
|
|
win_length=window_size, |
|
|
return_complex=True, |
|
|
window=self.multi_stft_window_fn(window_size, device=device), |
|
|
**self.multi_stft_kwargs, |
|
|
) |
|
|
|
|
|
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs) |
|
|
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs) |
|
|
|
|
|
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y) |
|
|
|
|
|
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight |
|
|
|
|
|
total_loss = loss + weighted_multi_resolution_loss |
|
|
|
|
|
if not return_loss_breakdown: |
|
|
return total_loss |
|
|
|
|
|
return total_loss, (loss, multi_stft_resolution_loss) |