BS-Roformer-HyperACE / bs_roformer.py
pcunwa's picture
Update bs_roformer.py
d0d17ea verified
from functools import partial
import torch
from torch import nn, einsum, Tensor
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from models.bs_roformer.attend import Attend
try:
from models.bs_roformer.attend_sage import Attend as AttendSage
except:
pass
from torch.utils.checkpoint import checkpoint
from beartype.typing import Tuple, Optional, List, Callable
from beartype import beartype
from rotary_embedding_torch import RotaryEmbedding
from einops import rearrange, pack, unpack
from einops.layers.torch import Rearrange
import torchaudio
# helper functions
def exists(val):
return val is not None
def default(v, d):
return v if exists(v) else d
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# norm
def l2norm(t):
return F.normalize(t, dim = -1, p = 2)
class RMSNorm(Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim=-1) * self.scale * self.gamma
# attention
class FeedForward(Module):
def __init__(
self,
dim,
mult=4,
dropout=0.
):
super().__init__()
dim_inner = int(dim * mult)
self.net = nn.Sequential(
RMSNorm(dim),
nn.Linear(dim, dim_inner),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(dim_inner, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(
self,
dim,
heads=8,
dim_head=64,
dropout=0.,
rotary_embed=None,
flash=True,
sage_attention=False,
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
dim_inner = heads * dim_head
self.rotary_embed = rotary_embed
if sage_attention:
self.attend = AttendSage(flash=flash, dropout=dropout)
else:
self.attend = Attend(flash=flash, dropout=dropout)
self.norm = RMSNorm(dim)
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
self.to_gates = nn.Linear(dim, heads)
self.to_out = nn.Sequential(
nn.Linear(dim_inner, dim, bias=False),
nn.Dropout(dropout)
)
def forward(self, x):
x = self.norm(x)
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
if exists(self.rotary_embed):
q = self.rotary_embed.rotate_queries_or_keys(q)
k = self.rotary_embed.rotate_queries_or_keys(k)
out = self.attend(q, k, v)
gates = self.to_gates(x)
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class LinearAttention(Module):
"""
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
"""
@beartype
def __init__(
self,
*,
dim,
dim_head=32,
heads=8,
scale=8,
flash=False,
dropout=0.,
sage_attention=False,
):
super().__init__()
dim_inner = dim_head * heads
self.norm = RMSNorm(dim)
self.to_qkv = nn.Sequential(
nn.Linear(dim, dim_inner * 3, bias=False),
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
)
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
if sage_attention:
self.attend = AttendSage(
scale=scale,
dropout=dropout,
flash=flash
)
else:
self.attend = Attend(
scale=scale,
dropout=dropout,
flash=flash
)
self.to_out = nn.Sequential(
Rearrange('b h d n -> b n (h d)'),
nn.Linear(dim_inner, dim, bias=False)
)
def forward(
self,
x
):
x = self.norm(x)
q, k, v = self.to_qkv(x)
q, k = map(l2norm, (q, k))
q = q * self.temperature.exp()
out = self.attend(q, k, v)
return self.to_out(out)
class Transformer(Module):
def __init__(
self,
*,
dim,
depth,
dim_head=64,
heads=8,
attn_dropout=0.,
ff_dropout=0.,
ff_mult=4,
norm_output=True,
rotary_embed=None,
flash_attn=True,
linear_attn=False,
sage_attention=False,
):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
if linear_attn:
attn = LinearAttention(
dim=dim,
dim_head=dim_head,
heads=heads,
dropout=attn_dropout,
flash=flash_attn,
sage_attention=sage_attention
)
else:
attn = Attention(
dim=dim,
dim_head=dim_head,
heads=heads,
dropout=attn_dropout,
rotary_embed=rotary_embed,
flash=flash_attn,
sage_attention=sage_attention
)
self.layers.append(ModuleList([
attn,
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
]))
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
# bandsplit module
class BandSplit(Module):
@beartype
def __init__(
self,
dim,
dim_inputs: Tuple[int, ...]
):
super().__init__()
self.dim_inputs = dim_inputs
self.to_features = ModuleList([])
for dim_in in dim_inputs:
net = nn.Sequential(
RMSNorm(dim_in),
nn.Linear(dim_in, dim)
)
self.to_features.append(net)
def forward(self, x):
x = x.split(self.dim_inputs, dim=-1)
outs = []
for split_input, to_feature in zip(x, self.to_features):
split_output = to_feature(split_input)
outs.append(split_output)
x = torch.stack(outs, dim=-2)
return x
class Conv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.InstanceNorm2d(c2, affine=True, eps=1e-8)
self.act = nn.SiLU() if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
return p
class DSConv(nn.Module):
def __init__(self, c1, c2, k=3, s=1, p=None, act=True):
super().__init__()
self.dwconv = nn.Conv2d(c1, c1, k, s, autopad(k, p), groups=c1, bias=False)
self.pwconv = nn.Conv2d(c1, c2, 1, 1, 0, bias=False)
self.bn = nn.InstanceNorm2d(c2, affine=True, eps=1e-8)
self.act = nn.SiLU() if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.pwconv(self.dwconv(x))))
class DS_Bottleneck(nn.Module):
def __init__(self, c1, c2, k=3, shortcut=True):
super().__init__()
c_ = c1
self.dsconv1 = DSConv(c1, c_, k=3, s=1)
self.dsconv2 = DSConv(c_, c2, k=k, s=1)
self.shortcut = shortcut and c1 == c2
def forward(self, x):
return x + self.dsconv2(self.dsconv1(x)) if self.shortcut else self.dsconv2(self.dsconv1(x))
class DS_C3k(nn.Module):
def __init__(self, c1, c2, n=1, k=3, e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1, 1)
self.m = nn.Sequential(*[DS_Bottleneck(c_, c_, k=k, shortcut=True) for _ in range(n)])
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class DS_C3k2(nn.Module):
def __init__(self, c1, c2, n=1, k=3, e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.m = DS_C3k(c_, c_, n=n, k=k, e=1.0)
self.cv2 = Conv(c_, c2, 1, 1)
def forward(self, x):
x_ = self.cv1(x)
x_ = self.m(x_)
return self.cv2(x_)
class AdaptiveHyperedgeGeneration(nn.Module):
def __init__(self, in_channels, num_hyperedges, num_heads=8):
super().__init__()
self.num_hyperedges = num_hyperedges
self.num_heads = num_heads
self.head_dim = in_channels // num_heads
self.global_proto = nn.Parameter(torch.randn(num_hyperedges, in_channels))
self.context_mapper = nn.Linear(2 * in_channels, num_hyperedges * in_channels, bias=False)
self.query_proj = nn.Linear(in_channels, in_channels, bias=False)
self.scale = self.head_dim ** -0.5
def forward(self, x):
B, N, C = x.shape
f_avg = F.adaptive_avg_pool1d(x.permute(0, 2, 1), 1).squeeze(-1)
f_max = F.adaptive_max_pool1d(x.permute(0, 2, 1), 1).squeeze(-1)
f_ctx = torch.cat((f_avg, f_max), dim=1)
delta_P = self.context_mapper(f_ctx).view(B, self.num_hyperedges, C)
P = self.global_proto.unsqueeze(0) + delta_P
z = self.query_proj(x)
z = z.view(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
P = P.view(B, self.num_hyperedges, self.num_heads, self.head_dim).permute(0, 2, 3, 1)
sim = (z @ P) * self.scale
s_bar = sim.mean(dim=1)
A = F.softmax(s_bar.permute(0, 2, 1), dim=-1)
return A
class HypergraphConvolution(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.W_e = nn.Linear(in_channels, in_channels, bias=False)
self.W_v = nn.Linear(in_channels, out_channels, bias=False)
self.act = nn.SiLU()
def forward(self, x, A):
f_m = torch.bmm(A, x)
f_m = self.act(self.W_e(f_m))
x_out = torch.bmm(A.transpose(1, 2), f_m)
x_out = self.act(self.W_v(x_out))
return x + x_out
class AdaptiveHypergraphComputation(nn.Module):
def __init__(self, in_channels, out_channels, num_hyperedges=8, num_heads=8):
super().__init__()
self.adaptive_hyperedge_gen = AdaptiveHyperedgeGeneration(
in_channels, num_hyperedges, num_heads
)
self.hypergraph_conv = HypergraphConvolution(in_channels, out_channels)
def forward(self, x):
B, C, H, W = x.shape
x_flat = x.flatten(2).permute(0, 2, 1)
A = self.adaptive_hyperedge_gen(x_flat)
x_out_flat = self.hypergraph_conv(x_flat, A)
x_out = x_out_flat.permute(0, 2, 1).view(B, -1, H, W)
return x_out
class C3AH(nn.Module):
def __init__(self, c1, c2, num_hyperedges=8, num_heads=8, e=0.5):
super().__init__()
c_ = int(c1 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.ahc = AdaptiveHypergraphComputation(
c_, c_, num_hyperedges, num_heads
)
self.cv3 = Conv(2 * c_, c2, 1, 1)
def forward(self, x):
x_lateral = self.cv1(x)
x_ahc = self.ahc(self.cv2(x))
return self.cv3(torch.cat((x_ahc, x_lateral), dim=1))
class HyperACE(nn.Module):
def __init__(self, in_channels: List[int], out_channels: int,
num_hyperedges=8, num_heads=8, k=2, l=1, c_h=0.5, c_l=0.25):
super().__init__()
c2, c3, c4, c5 = in_channels
c_mid = c4
self.fuse_conv = Conv(c2 + c3 + c4 + c5, c_mid, 1, 1)
self.c_h = int(c_mid * c_h)
self.c_l = int(c_mid * c_l)
self.c_s = c_mid - self.c_h - self.c_l
assert self.c_s > 0, "Channel split error"
self.high_order_branch = nn.ModuleList(
[C3AH(self.c_h, self.c_h, num_hyperedges, num_heads, e=1.0) for _ in range(k)]
)
self.high_order_fuse = Conv(self.c_h * k, self.c_h, 1, 1)
self.low_order_branch = nn.Sequential(
*[DS_C3k(self.c_l, self.c_l, n=1, k=3, e=1.0) for _ in range(l)]
)
self.final_fuse = Conv(self.c_h + self.c_l + self.c_s, out_channels, 1, 1)
def forward(self, x: List[torch.Tensor]) -> torch.Tensor:
B2, B3, B4, B5 = x
B, _, H4, W4 = B4.shape
B2_resized = F.interpolate(B2, size=(H4, W4), mode='bilinear', align_corners=False)
B3_resized = F.interpolate(B3, size=(H4, W4), mode='bilinear', align_corners=False)
B5_resized = F.interpolate(B5, size=(H4, W4), mode='bilinear', align_corners=False)
x_b = self.fuse_conv(torch.cat((B2_resized, B3_resized, B4, B5_resized), dim=1))
x_h, x_l, x_s = torch.split(x_b, [self.c_h, self.c_l, self.c_s], dim=1)
x_h_outs = [m(x_h) for m in self.high_order_branch]
x_h_fused = self.high_order_fuse(torch.cat(x_h_outs, dim=1))
x_l_out = self.low_order_branch(x_l)
y = self.final_fuse(torch.cat((x_h_fused, x_l_out, x_s), dim=1))
return y
class GatedFusion(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, in_channels, 1, 1))
def forward(self, f_in, h):
if f_in.shape[1] != h.shape[1]:
raise ValueError(f"Channel mismatch: f_in={f_in.shape}, h={h.shape}")
return f_in + self.gamma * h
class Backbone(nn.Module):
def __init__(self, in_channels=256, base_channels=64, base_depth=3):
super().__init__()
c = base_channels
c2 = base_channels
c3 = 256
c4 = 384
c5 = 512
c6 = 768
self.stem = DSConv(in_channels, c2, k=3, s=(2, 1), p=1)
self.p2 = nn.Sequential(
DSConv(c2, c3, k=3, s=(2, 1), p=1),
DS_C3k2(c3, c3, n=base_depth)
)
self.p3 = nn.Sequential(
DSConv(c3, c4, k=3, s=(2, 1), p=1),
DS_C3k2(c4, c4, n=base_depth*2)
)
self.p4 = nn.Sequential(
DSConv(c4, c5, k=3, s=(2, 1), p=1),
DS_C3k2(c5, c5, n=base_depth*2)
)
self.p5 = nn.Sequential(
DSConv(c5, c6, k=3, s=(2, 1), p=1),
DS_C3k2(c6, c6, n=base_depth)
)
self.out_channels = [c3, c4, c5, c6]
def forward(self, x):
x = self.stem(x)
x2 = self.p2(x)
x3 = self.p3(x2)
x4 = self.p4(x3)
x5 = self.p5(x4)
return [x2, x3, x4, x5]
class Decoder(nn.Module):
def __init__(self, encoder_channels: List[int], hyperace_out_c: int, decoder_channels: List[int]):
super().__init__()
c_p2, c_p3, c_p4, c_p5 = encoder_channels
c_d2, c_d3, c_d4, c_d5 = decoder_channels
self.h_to_d5 = Conv(hyperace_out_c, c_d5, 1, 1)
self.h_to_d4 = Conv(hyperace_out_c, c_d4, 1, 1)
self.h_to_d3 = Conv(hyperace_out_c, c_d3, 1, 1)
self.h_to_d2 = Conv(hyperace_out_c, c_d2, 1, 1)
self.fusion_d5 = GatedFusion(c_d5)
self.fusion_d4 = GatedFusion(c_d4)
self.fusion_d3 = GatedFusion(c_d3)
self.fusion_d2 = GatedFusion(c_d2)
self.skip_p5 = Conv(c_p5, c_d5, 1, 1)
self.skip_p4 = Conv(c_p4, c_d4, 1, 1)
self.skip_p3 = Conv(c_p3, c_d3, 1, 1)
self.skip_p2 = Conv(c_p2, c_d2, 1, 1)
self.up_d5 = DS_C3k2(c_d5, c_d4, n=1)
self.up_d4 = DS_C3k2(c_d4, c_d3, n=1)
self.up_d3 = DS_C3k2(c_d3, c_d2, n=1)
self.final_d2 = DS_C3k2(c_d2, c_d2, n=1)
def forward(self, enc_feats: List[torch.Tensor], h_ace: torch.Tensor):
p2, p3, p4, p5 = enc_feats
d5 = self.skip_p5(p5)
h_d5 = self.h_to_d5(F.interpolate(h_ace, size=d5.shape[2:], mode='bilinear'))
d5 = self.fusion_d5(d5, h_d5)
d5_up = F.interpolate(d5, size=p4.shape[2:], mode='bilinear')
d4_skip = self.skip_p4(p4)
d4 = self.up_d5(d5_up) + d4_skip
h_d4 = self.h_to_d4(F.interpolate(h_ace, size=d4.shape[2:], mode='bilinear'))
d4 = self.fusion_d4(d4, h_d4)
d4_up = F.interpolate(d4, size=p3.shape[2:], mode='bilinear')
d3_skip = self.skip_p3(p3)
d3 = self.up_d4(d4_up) + d3_skip
h_d3 = self.h_to_d3(F.interpolate(h_ace, size=d3.shape[2:], mode='bilinear'))
d3 = self.fusion_d3(d3, h_d3)
d3_up = F.interpolate(d3, size=p2.shape[2:], mode='bilinear')
d2_skip = self.skip_p2(p2)
d2 = self.up_d3(d3_up) + d2_skip
h_d2 = self.h_to_d2(F.interpolate(h_ace, size=d2.shape[2:], mode='bilinear'))
d2 = self.fusion_d2(d2, h_d2)
d2_final = self.final_d2(d2)
return d2_final
class FreqPixelShuffle(nn.Module):
def __init__(self, in_channels, out_channels, scale=2):
super().__init__()
self.scale = scale
self.conv = DSConv(in_channels, out_channels * scale, k=3, s=1, p=1)
self.act = nn.SiLU()
def forward(self, x):
x = self.conv(x)
B, C_r, H, W = x.shape
out_c = C_r // self.scale
x = x.view(B, out_c, self.scale, H, W)
x = x.permute(0, 1, 3, 4, 2).contiguous()
x = x.view(B, out_c, H, W * self.scale)
return x
class ProgressiveUpsampleHead(nn.Module):
def __init__(self, in_channels, out_channels, target_bins=1025):
super().__init__()
self.target_bins = target_bins
c = in_channels
self.block1 = FreqPixelShuffle(c, c, scale=2)
self.block2 = FreqPixelShuffle(c, c // 2, scale=2)
self.block3 = FreqPixelShuffle(c // 2, c // 2, scale=2)
self.block4 = FreqPixelShuffle(c // 2, c // 4, scale=2)
self.final_conv = nn.Conv2d(c // 4, out_channels, kernel_size=1, bias=False)
def forward(self, x):
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
if x.shape[-1] != self.target_bins:
x = F.interpolate(x, size=(x.shape[2], self.target_bins), mode='bilinear', align_corners=False)
x = self.final_conv(x)
return x
class SegmModel(nn.Module):
def __init__(self, in_bands=62, in_dim=256, out_bins=1025, out_channels=4,
base_channels=64, base_depth=2,
num_hyperedges=16, num_heads=8):
super().__init__()
self.backbone = Backbone(in_channels=in_dim, base_channels=base_channels, base_depth=base_depth)
enc_channels = self.backbone.out_channels
c2, c3, c4, c5 = enc_channels
hyperace_in_channels = enc_channels
hyperace_out_channels = c4
self.hyperace = HyperACE(
hyperace_in_channels, hyperace_out_channels,
num_hyperedges, num_heads, k=3, l=2
)
decoder_channels = [c2, c3, c4, c5]
self.decoder = Decoder(
enc_channels, hyperace_out_channels, decoder_channels
)
self.upsample_head = ProgressiveUpsampleHead(
in_channels=decoder_channels[0],
out_channels=out_channels,
target_bins=out_bins
)
def forward(self, x):
H, W = x.shape[2:]
enc_feats = self.backbone(x)
h_ace_feats = self.hyperace(enc_feats)
dec_feat = self.decoder(enc_feats, h_ace_feats)
feat_time_restored = F.interpolate(dec_feat, size=(H, dec_feat.shape[-1]), mode='bilinear', align_corners=False)
out = self.upsample_head(feat_time_restored)
return out
def MLP(
dim_in,
dim_out,
dim_hidden=None,
depth=1,
activation=nn.Tanh
):
dim_hidden = default(dim_hidden, dim_in)
net = []
dims = (dim_in, *((dim_hidden,) * (depth - 1)), dim_out)
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
is_last = ind == (len(dims) - 2)
net.append(nn.Linear(layer_dim_in, layer_dim_out))
if is_last:
continue
net.append(activation())
return nn.Sequential(*net)
class MaskEstimator(Module):
@beartype
def __init__(
self,
dim,
dim_inputs: Tuple[int, ...],
depth,
mlp_expansion_factor=4
):
super().__init__()
self.dim_inputs = dim_inputs
self.to_freqs = ModuleList([])
dim_hidden = dim * mlp_expansion_factor
for dim_in in dim_inputs:
net = []
mlp = nn.Sequential(
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
nn.GLU(dim=-1)
)
self.to_freqs.append(mlp)
self.segm = SegmModel(in_bands=len(dim_inputs), in_dim=dim, out_bins=sum(dim_inputs)//4)
def forward(self, x):
y = rearrange(x, 'b t f c -> b c t f')
y = self.segm(y)
y = rearrange(y, 'b c t f -> b t (f c)')
x = x.unbind(dim=-2)
outs = []
for band_features, mlp in zip(x, self.to_freqs):
freq_out = mlp(band_features)
outs.append(freq_out)
return torch.cat(outs, dim=-1) + y
# main class
DEFAULT_FREQS_PER_BANDS = (
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
12, 12, 12, 12, 12, 12, 12, 12,
24, 24, 24, 24, 24, 24, 24, 24,
48, 48, 48, 48, 48, 48, 48, 48,
128, 129,
)
class BSRoformer(Module):
@beartype
def __init__(
self,
dim,
*,
depth,
stereo=False,
num_stems=1,
time_transformer_depth=2,
freq_transformer_depth=2,
linear_transformer_depth=0,
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
# in the paper, they divide into ~60 bands, test with 1 for starters
dim_head=64,
heads=8,
attn_dropout=0.,
ff_dropout=0.,
flash_attn=True,
dim_freqs_in=1025,
stft_n_fft=2048,
stft_hop_length=512,
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
stft_win_length=2048,
stft_normalized=False,
stft_window_fn: Optional[Callable] = None,
mask_estimator_depth=2,
multi_stft_resolution_loss_weight=1.,
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
multi_stft_hop_size=147,
multi_stft_normalized=False,
multi_stft_window_fn: Callable = torch.hann_window,
mlp_expansion_factor=4,
use_torch_checkpoint=False,
skip_connection=False,
sage_attention=False,
):
super().__init__()
self.stereo = stereo
self.audio_channels = 2 if stereo else 1
self.num_stems = num_stems
self.use_torch_checkpoint = use_torch_checkpoint
self.skip_connection = skip_connection
self.layers = ModuleList([])
if sage_attention:
print("Use Sage Attention")
transformer_kwargs = dict(
dim=dim,
heads=heads,
dim_head=dim_head,
attn_dropout=attn_dropout,
ff_dropout=ff_dropout,
flash_attn=flash_attn,
norm_output=False,
sage_attention=sage_attention,
)
time_rotary_embed = RotaryEmbedding(dim=dim_head)
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
for _ in range(depth):
tran_modules = []
tran_modules.append(
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
)
tran_modules.append(
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
)
self.layers.append(nn.ModuleList(tran_modules))
self.final_norm = RMSNorm(dim)
self.stft_kwargs = dict(
n_fft=stft_n_fft,
hop_length=stft_hop_length,
win_length=stft_win_length,
normalized=stft_normalized
)
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_win_length), return_complex=True).shape[1]
assert len(freqs_per_bands) > 1
assert sum(
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}'
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands)
self.band_split = BandSplit(
dim=dim,
dim_inputs=freqs_per_bands_with_complex
)
self.mask_estimators = nn.ModuleList([])
for _ in range(num_stems):
mask_estimator = MaskEstimator(
dim=dim,
dim_inputs=freqs_per_bands_with_complex,
depth=mask_estimator_depth,
mlp_expansion_factor=mlp_expansion_factor,
)
self.mask_estimators.append(mask_estimator)
# for the multi-resolution stft loss
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
self.multi_stft_n_fft = stft_n_fft
self.multi_stft_window_fn = multi_stft_window_fn
self.multi_stft_kwargs = dict(
hop_length=multi_stft_hop_size,
normalized=multi_stft_normalized
)
def forward(
self,
raw_audio,
target=None,
return_loss_breakdown=False
):
"""
einops
b - batch
f - freq
t - time
s - audio channel (1 for mono, 2 for stereo)
n - number of 'stems'
c - complex (2)
d - feature dimension
"""
device = raw_audio.device
# defining whether model is loaded on MPS (MacOS GPU accelerator)
x_is_mps = True if device.type == "mps" else False
if raw_audio.ndim == 2:
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
channels = raw_audio.shape[1]
assert (not self.stereo and channels == 1) or (self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
# to stft
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
stft_window = self.stft_window_fn(device=device)
# RuntimeError: FFT operations are only supported on MacOS 14+
# Since it's tedious to define whether we're on correct MacOS version - simple try-catch is used
try:
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
except:
stft_repr = torch.stft(raw_audio.cpu() if x_is_mps else raw_audio, **self.stft_kwargs,
window=stft_window.cpu() if x_is_mps else stft_window, return_complex=True).to(
device)
stft_repr = torch.view_as_real(stft_repr)
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
# merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c')
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
x = self.band_split(x)
# axial / hierarchical attention
for i, transformer_block in enumerate(self.layers):
time_transformer, freq_transformer = transformer_block
x = rearrange(x, 'b t f d -> b f t d')
x, ps = pack([x], '* t d')
x = time_transformer(x)
x, = unpack(x, ps, '* t d')
x = rearrange(x, 'b f t d -> b t f d')
x, ps = pack([x], '* f d')
x = freq_transformer(x)
x, = unpack(x, ps, '* f d')
x = self.final_norm(x)
num_stems = len(self.mask_estimators)
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2)
# modulate frequency representation
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
stft_repr = torch.view_as_complex(stft_repr)
mask = torch.view_as_complex(mask)
stft_repr = stft_repr * mask
# istft
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
try:
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=raw_audio.shape[-1])
except:
recon_audio = torch.istft(stft_repr.cpu() if x_is_mps else stft_repr, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=False, length=raw_audio.shape[-1]).to(device)
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems)
if num_stems == 1:
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
# if a target is passed in, calculate loss for learning
if not exists(target):
return recon_audio
if self.num_stems > 1:
assert target.ndim == 4 and target.shape[1] == self.num_stems
if target.ndim == 2:
target = rearrange(target, '... t -> ... 1 t')
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
loss = F.l1_loss(recon_audio, target)
multi_stft_resolution_loss = 0.
for window_size in self.multi_stft_resolutions_window_sizes:
res_stft_kwargs = dict(
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
win_length=window_size,
return_complex=True,
window=self.multi_stft_window_fn(window_size, device=device),
**self.multi_stft_kwargs,
)
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
total_loss = loss + weighted_multi_resolution_loss
if not return_loss_breakdown:
return total_loss
return total_loss, (loss, multi_stft_resolution_loss)