File size: 19,313 Bytes
e6bd825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23d985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6bd825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-to-image

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/ddcolor/web-assets/model_demo.png)

# DDColor: Optimized for Mobile Deployment
## Colorize image from the black-and-white image


DDColor is a coloring algorithm that produces natural, vivid color results from incoming black and white images.

This model is an implementation of DDColor found [here](https://github.com/piddnad/DDColor/).


This repository provides scripts to run DDColor on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/ddcolor).



### Model Details

- **Model Type:** Model_use_case.image_editing
- **Model Stats:**
  - Model checkpoint: ddcolor_paper_tiny.pth
  - Input resolution: 224x224
  - Number of parameters: 56.3M
  - Model size (float): 215 MB
  - Model size (w8a8): 54.8 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 249.068 ms | 0 - 332 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1989.568 ms | 0 - 720 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 169.0 ms | 1 - 262 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1235.43 ms | 1 - 253 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 158.008 ms | 0 - 34 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1124.836 ms | 0 - 46 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1127.711 ms | 0 - 167 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.onnx.zip) |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 161.863 ms | 1 - 347 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1112.75 ms | 1 - 661 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 249.068 ms | 0 - 332 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1989.568 ms | 0 - 720 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 159.856 ms | 0 - 34 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1127.688 ms | 0 - 45 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 176.33 ms | 0 - 239 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1229.554 ms | 0 - 394 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 159.691 ms | 0 - 35 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1120.366 ms | 0 - 48 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 161.863 ms | 1 - 347 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1112.75 ms | 1 - 661 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 112.938 ms | 1 - 356 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 839.748 ms | 0 - 837 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 846.043 ms | 1 - 952 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.onnx.zip) |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 95.693 ms | 1 - 309 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 839.94 ms | 1 - 433 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 859.57 ms | 1 - 565 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.onnx.zip) |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 76.207 ms | 0 - 325 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 700.968 ms | 0 - 608 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 690.838 ms | 1 - 673 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.onnx.zip) |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1179.236 ms | 81 - 81 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1157.963 ms | 113 - 113 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.onnx.zip) |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3336.441 ms | 0 - 362 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5187.205 ms | 0 - 392 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1772.082 ms | 0 - 395 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2974.197 ms | 1 - 290 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1760.119 ms | 0 - 53 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2717.716 ms | 3 - 65 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1784.176 ms | 0 - 362 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2832.254 ms | 0 - 397 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 614.783 ms | 86 - 116 MB | CPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 647.012 ms | 328 - 355 MB | CPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.onnx.zip) |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 817.267 ms | 63 - 104 MB | CPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 526.175 ms | 325 - 349 MB | CPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.onnx.zip) |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3336.441 ms | 0 - 362 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5187.205 ms | 0 - 392 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1761.455 ms | 0 - 47 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2717.403 ms | 0 - 64 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2019.923 ms | 0 - 370 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3156.066 ms | 0 - 286 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1762.868 ms | 0 - 24 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2716.067 ms | 0 - 66 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1784.176 ms | 0 - 362 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2832.254 ms | 0 - 397 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1337.685 ms | 0 - 381 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2046.081 ms | 0 - 440 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1048.701 ms | 0 - 106 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1786.258 ms | 0 - 285 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1947.273 ms | 47 - 256 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.onnx.zip) |
| DDColor | w8a8 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | TFLITE | 471.997 ms | 103 - 353 MB | CPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | ONNX | 553.771 ms | 302 - 324 MB | CPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.onnx.zip) |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 925.38 ms | 0 - 111 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1500.827 ms | 0 - 423 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1608.329 ms | 38 - 290 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.onnx.zip) |
| DDColor | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2827.194 ms | 175 - 175 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.dlc) |
| DDColor | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3266.117 ms | 69 - 69 MB | NPU | [DDColor.onnx.zip](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[ddcolor]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.ddcolor.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ddcolor.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.ddcolor.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/ddcolor/qai_hub_models/models/DDColor/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.ddcolor import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.ddcolor.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ddcolor.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on DDColor's performance across various devices [here](https://aihub.qualcomm.com/models/ddcolor).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of DDColor can be found
  [here](https://github.com/piddnad/DDColor/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders](https://arxiv.org/abs/2201.03545)
* [Source Model Implementation](https://github.com/piddnad/DDColor/)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).