File size: 14,648 Bytes
e6bd825 3bc62da e6bd825 6bbcb82 e6bd825 cfa83ce e6bd825 cfa83ce e6bd825 cfa83ce e6bd825 cfa83ce e6bd825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-to-image
---

# DDColor: Optimized for Mobile Deployment
## Colorize image from the black-and-white image
DDColor is a coloring algorithm that produces natural, vivid color results from incoming black and white images.
This model is an implementation of DDColor found [here](https://github.com/piddnad/DDColor/).
This repository provides scripts to run DDColor on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/ddcolor).
### Model Details
- **Model Type:** Model_use_case.image_editing
- **Model Stats:**
- Model checkpoint: ddcolor_paper_tiny.pth
- Input resolution: 224x224
- Number of parameters: 56.3M
- Model size (float): 215 MB
- Model size (w8a8): 54.8 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 248.698 ms | 1 - 352 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1990.164 ms | 1 - 444 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 168.888 ms | 1 - 263 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1246.016 ms | 0 - 248 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 159.228 ms | 0 - 37 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1122.164 ms | 0 - 45 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 612.742 ms | 1 - 354 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1115.818 ms | 0 - 710 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 248.698 ms | 1 - 352 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1990.164 ms | 1 - 444 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 159.59 ms | 0 - 36 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1122.822 ms | 0 - 43 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 176.513 ms | 0 - 242 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1232.732 ms | 1 - 402 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 159.237 ms | 0 - 38 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1124.211 ms | 0 - 41 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 612.742 ms | 1 - 354 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1115.818 ms | 0 - 710 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 115.014 ms | 0 - 377 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 847.726 ms | 0 - 846 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 94.763 ms | 1 - 310 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 840.905 ms | 1 - 434 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 73.571 ms | 1 - 330 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.tflite) |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 708.725 ms | 1 - 664 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1161.306 ms | 296 - 296 MB | NPU | [DDColor.dlc](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor.dlc) |
| DDColor | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 653.671 ms | 113 - 242 MB | CPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3047.28 ms | 0 - 351 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1700.149 ms | 0 - 424 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1609.53 ms | 0 - 33 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1631.545 ms | 0 - 350 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 829.323 ms | 35 - 97 MB | CPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3047.28 ms | 0 - 351 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1611.308 ms | 0 - 39 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1938.979 ms | 0 - 399 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1610.256 ms | 0 - 22 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1631.545 ms | 0 - 350 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1223.884 ms | 0 - 366 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1161.027 ms | 0 - 350 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 472.892 ms | 105 - 355 MB | CPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1165.779 ms | 0 - 351 MB | NPU | [DDColor.tflite](https://huggingface.co/qualcomm/DDColor/blob/main/DDColor_w8a8.tflite) |
## Installation
Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[ddcolor]"
```
## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.ddcolor.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ddcolor.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.ddcolor.export
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/ddcolor/qai_hub_models/models/DDColor/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.ddcolor import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.ddcolor.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ddcolor.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on DDColor's performance across various devices [here](https://aihub.qualcomm.com/models/ddcolor).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of DDColor can be found
[here](https://github.com/piddnad/DDColor/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders](https://arxiv.org/abs/2201.03545)
* [Source Model Implementation](https://github.com/piddnad/DDColor/)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|