Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
model-index:
|
| 5 |
- name: internlm-chatbode-20b
|
| 6 |
results:
|
|
@@ -18,7 +17,8 @@ model-index:
|
|
| 18 |
value: 65.78
|
| 19 |
name: accuracy
|
| 20 |
source:
|
| 21 |
-
url:
|
|
|
|
| 22 |
name: Open Portuguese LLM Leaderboard
|
| 23 |
- task:
|
| 24 |
type: text-generation
|
|
@@ -34,7 +34,8 @@ model-index:
|
|
| 34 |
value: 58.69
|
| 35 |
name: accuracy
|
| 36 |
source:
|
| 37 |
-
url:
|
|
|
|
| 38 |
name: Open Portuguese LLM Leaderboard
|
| 39 |
- task:
|
| 40 |
type: text-generation
|
|
@@ -50,7 +51,8 @@ model-index:
|
|
| 50 |
value: 43.33
|
| 51 |
name: accuracy
|
| 52 |
source:
|
| 53 |
-
url:
|
|
|
|
| 54 |
name: Open Portuguese LLM Leaderboard
|
| 55 |
- task:
|
| 56 |
type: text-generation
|
|
@@ -66,7 +68,8 @@ model-index:
|
|
| 66 |
value: 91.53
|
| 67 |
name: f1-macro
|
| 68 |
source:
|
| 69 |
-
url:
|
|
|
|
| 70 |
name: Open Portuguese LLM Leaderboard
|
| 71 |
- task:
|
| 72 |
type: text-generation
|
|
@@ -82,7 +85,8 @@ model-index:
|
|
| 82 |
value: 78.95
|
| 83 |
name: pearson
|
| 84 |
source:
|
| 85 |
-
url:
|
|
|
|
| 86 |
name: Open Portuguese LLM Leaderboard
|
| 87 |
- task:
|
| 88 |
type: text-generation
|
|
@@ -98,7 +102,8 @@ model-index:
|
|
| 98 |
value: 81.36
|
| 99 |
name: f1-macro
|
| 100 |
source:
|
| 101 |
-
url:
|
|
|
|
| 102 |
name: Open Portuguese LLM Leaderboard
|
| 103 |
- task:
|
| 104 |
type: text-generation
|
|
@@ -114,7 +119,8 @@ model-index:
|
|
| 114 |
value: 81.72
|
| 115 |
name: f1-macro
|
| 116 |
source:
|
| 117 |
-
url:
|
|
|
|
| 118 |
name: Open Portuguese LLM Leaderboard
|
| 119 |
- task:
|
| 120 |
type: text-generation
|
|
@@ -130,7 +136,8 @@ model-index:
|
|
| 130 |
value: 73.66
|
| 131 |
name: f1-macro
|
| 132 |
source:
|
| 133 |
-
url:
|
|
|
|
| 134 |
name: Open Portuguese LLM Leaderboard
|
| 135 |
- task:
|
| 136 |
type: text-generation
|
|
@@ -146,204 +153,58 @@ model-index:
|
|
| 146 |
value: 70.11
|
| 147 |
name: f1-macro
|
| 148 |
source:
|
| 149 |
-
url:
|
|
|
|
| 150 |
name: Open Portuguese LLM Leaderboard
|
|
|
|
|
|
|
|
|
|
| 151 |
---
|
| 152 |
|
| 153 |
-
#
|
| 154 |
|
| 155 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 156 |
|
|
|
|
| 157 |
|
|
|
|
| 158 |
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
| 168 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 169 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 170 |
-
- **Model type:** [More Information Needed]
|
| 171 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 172 |
-
- **License:** [More Information Needed]
|
| 173 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 186 |
-
|
| 187 |
-
### Direct Use
|
| 188 |
-
|
| 189 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
### Downstream Use [optional]
|
| 194 |
-
|
| 195 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 196 |
-
|
| 197 |
-
[More Information Needed]
|
| 198 |
-
|
| 199 |
-
### Out-of-Scope Use
|
| 200 |
-
|
| 201 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 202 |
-
|
| 203 |
-
[More Information Needed]
|
| 204 |
-
|
| 205 |
-
## Bias, Risks, and Limitations
|
| 206 |
-
|
| 207 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 208 |
-
|
| 209 |
-
[More Information Needed]
|
| 210 |
-
|
| 211 |
-
### Recommendations
|
| 212 |
-
|
| 213 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 214 |
-
|
| 215 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 216 |
-
|
| 217 |
-
## How to Get Started with the Model
|
| 218 |
-
|
| 219 |
-
Use the code below to get started with the model.
|
| 220 |
-
|
| 221 |
-
[More Information Needed]
|
| 222 |
-
|
| 223 |
-
## Training Details
|
| 224 |
-
|
| 225 |
-
### Training Data
|
| 226 |
-
|
| 227 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 228 |
-
|
| 229 |
-
[More Information Needed]
|
| 230 |
-
|
| 231 |
-
### Training Procedure
|
| 232 |
-
|
| 233 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 234 |
-
|
| 235 |
-
#### Preprocessing [optional]
|
| 236 |
-
|
| 237 |
-
[More Information Needed]
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
#### Training Hyperparameters
|
| 241 |
-
|
| 242 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 243 |
-
|
| 244 |
-
#### Speeds, Sizes, Times [optional]
|
| 245 |
-
|
| 246 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 247 |
-
|
| 248 |
-
[More Information Needed]
|
| 249 |
-
|
| 250 |
-
## Evaluation
|
| 251 |
-
|
| 252 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 253 |
-
|
| 254 |
-
### Testing Data, Factors & Metrics
|
| 255 |
-
|
| 256 |
-
#### Testing Data
|
| 257 |
-
|
| 258 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 259 |
-
|
| 260 |
-
[More Information Needed]
|
| 261 |
-
|
| 262 |
-
#### Factors
|
| 263 |
-
|
| 264 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 265 |
-
|
| 266 |
-
[More Information Needed]
|
| 267 |
-
|
| 268 |
-
#### Metrics
|
| 269 |
-
|
| 270 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 271 |
-
|
| 272 |
-
[More Information Needed]
|
| 273 |
-
|
| 274 |
-
### Results
|
| 275 |
-
|
| 276 |
-
[More Information Needed]
|
| 277 |
-
|
| 278 |
-
#### Summary
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
## Model Examination [optional]
|
| 283 |
-
|
| 284 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 285 |
-
|
| 286 |
-
[More Information Needed]
|
| 287 |
-
|
| 288 |
-
## Environmental Impact
|
| 289 |
-
|
| 290 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 291 |
-
|
| 292 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 293 |
-
|
| 294 |
-
- **Hardware Type:** [More Information Needed]
|
| 295 |
-
- **Hours used:** [More Information Needed]
|
| 296 |
-
- **Cloud Provider:** [More Information Needed]
|
| 297 |
-
- **Compute Region:** [More Information Needed]
|
| 298 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 299 |
-
|
| 300 |
-
## Technical Specifications [optional]
|
| 301 |
-
|
| 302 |
-
### Model Architecture and Objective
|
| 303 |
-
|
| 304 |
-
[More Information Needed]
|
| 305 |
-
|
| 306 |
-
### Compute Infrastructure
|
| 307 |
-
|
| 308 |
-
[More Information Needed]
|
| 309 |
-
|
| 310 |
-
#### Hardware
|
| 311 |
-
|
| 312 |
-
[More Information Needed]
|
| 313 |
-
|
| 314 |
-
#### Software
|
| 315 |
-
|
| 316 |
-
[More Information Needed]
|
| 317 |
-
|
| 318 |
-
## Citation [optional]
|
| 319 |
-
|
| 320 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 321 |
-
|
| 322 |
-
**BibTeX:**
|
| 323 |
-
|
| 324 |
-
[More Information Needed]
|
| 325 |
-
|
| 326 |
-
**APA:**
|
| 327 |
-
|
| 328 |
-
[More Information Needed]
|
| 329 |
-
|
| 330 |
-
## Glossary [optional]
|
| 331 |
-
|
| 332 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 333 |
-
|
| 334 |
-
[More Information Needed]
|
| 335 |
-
|
| 336 |
-
## More Information [optional]
|
| 337 |
-
|
| 338 |
-
[More Information Needed]
|
| 339 |
-
|
| 340 |
-
## Model Card Authors [optional]
|
| 341 |
-
|
| 342 |
-
[More Information Needed]
|
| 343 |
-
|
| 344 |
-
## Model Card Contact
|
| 345 |
-
|
| 346 |
-
[More Information Needed]
|
| 347 |
|
| 348 |
|
| 349 |
# Open Portuguese LLM Leaderboard Evaluation Results
|
|
@@ -361,5 +222,4 @@ Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-
|
|
| 361 |
|FaQuAD NLI | 81.36|
|
| 362 |
|HateBR Binary | 81.72|
|
| 363 |
|PT Hate Speech Binary | 73.66|
|
| 364 |
-
|tweetSentBR | 70.11|
|
| 365 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
|
|
|
| 3 |
model-index:
|
| 4 |
- name: internlm-chatbode-20b
|
| 5 |
results:
|
|
|
|
| 17 |
value: 65.78
|
| 18 |
name: accuracy
|
| 19 |
source:
|
| 20 |
+
url: >-
|
| 21 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 22 |
name: Open Portuguese LLM Leaderboard
|
| 23 |
- task:
|
| 24 |
type: text-generation
|
|
|
|
| 34 |
value: 58.69
|
| 35 |
name: accuracy
|
| 36 |
source:
|
| 37 |
+
url: >-
|
| 38 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 39 |
name: Open Portuguese LLM Leaderboard
|
| 40 |
- task:
|
| 41 |
type: text-generation
|
|
|
|
| 51 |
value: 43.33
|
| 52 |
name: accuracy
|
| 53 |
source:
|
| 54 |
+
url: >-
|
| 55 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 56 |
name: Open Portuguese LLM Leaderboard
|
| 57 |
- task:
|
| 58 |
type: text-generation
|
|
|
|
| 68 |
value: 91.53
|
| 69 |
name: f1-macro
|
| 70 |
source:
|
| 71 |
+
url: >-
|
| 72 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 73 |
name: Open Portuguese LLM Leaderboard
|
| 74 |
- task:
|
| 75 |
type: text-generation
|
|
|
|
| 85 |
value: 78.95
|
| 86 |
name: pearson
|
| 87 |
source:
|
| 88 |
+
url: >-
|
| 89 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 90 |
name: Open Portuguese LLM Leaderboard
|
| 91 |
- task:
|
| 92 |
type: text-generation
|
|
|
|
| 102 |
value: 81.36
|
| 103 |
name: f1-macro
|
| 104 |
source:
|
| 105 |
+
url: >-
|
| 106 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 107 |
name: Open Portuguese LLM Leaderboard
|
| 108 |
- task:
|
| 109 |
type: text-generation
|
|
|
|
| 119 |
value: 81.72
|
| 120 |
name: f1-macro
|
| 121 |
source:
|
| 122 |
+
url: >-
|
| 123 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 124 |
name: Open Portuguese LLM Leaderboard
|
| 125 |
- task:
|
| 126 |
type: text-generation
|
|
|
|
| 136 |
value: 73.66
|
| 137 |
name: f1-macro
|
| 138 |
source:
|
| 139 |
+
url: >-
|
| 140 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 141 |
name: Open Portuguese LLM Leaderboard
|
| 142 |
- task:
|
| 143 |
type: text-generation
|
|
|
|
| 153 |
value: 70.11
|
| 154 |
name: f1-macro
|
| 155 |
source:
|
| 156 |
+
url: >-
|
| 157 |
+
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-20b
|
| 158 |
name: Open Portuguese LLM Leaderboard
|
| 159 |
+
language:
|
| 160 |
+
- pt
|
| 161 |
+
pipeline_tag: text-generation
|
| 162 |
---
|
| 163 |
|
| 164 |
+
# internlm-chatbode-20b
|
| 165 |
|
| 166 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 167 |
|
| 168 |
+
O InternLm-ChatBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo [InternLM2](https://huggingface.co/internlm/internlm2-chat-20b). Este modelo foi refinado através do processo de fine-tuning utilizando o dataset UltraAlpaca.
|
| 169 |
|
| 170 |
+
## Características Principais
|
| 171 |
|
| 172 |
+
- **Modelo Base:** [internlm/internlm2-chat-20b](internlm/internlm2-chat-20b)
|
| 173 |
+
- **Dataset para Fine-tuning:** UltraAlpaca
|
| 174 |
+
- **Treinamento:** O treinamento foi realizado a partir do fine-tuning, usando QLoRA, do internlm2-chat-20b.
|
| 175 |
|
| 176 |
+
## Exemplo de uso
|
| 177 |
|
| 178 |
+
A seguir um exemplo de código de como carregar e utilizar o modelo:
|
| 179 |
|
| 180 |
+
```python
|
| 181 |
+
import torch
|
| 182 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 183 |
+
tokenizer = AutoTokenizer.from_pretrained("recogna-nlp/internlm-chatbode-20b", trust_remote_code=True)
|
| 184 |
+
model = AutoModelForCausalLM.from_pretrained("recogna-nlp/internlm-chatbode-20b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 185 |
+
model = model.eval()
|
| 186 |
+
response, history = model.chat(tokenizer, "Olá", history=[])
|
| 187 |
+
print(response)
|
| 188 |
+
response, history = model.chat(tokenizer, "O que é o Teorema de Pitágoras? Me dê um exemplo", history=history)
|
| 189 |
+
print(response)
|
| 190 |
+
```
|
| 191 |
|
| 192 |
+
As respostas podem ser geradas via stream utilizando o método `stream_chat`:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
```python
|
| 195 |
+
import torch
|
| 196 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 197 |
|
| 198 |
+
model_path = "recogna-nlp/internlm-chatbode-20b"
|
| 199 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 200 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 201 |
|
| 202 |
+
model = model.eval()
|
| 203 |
+
length = 0
|
| 204 |
+
for response, history in model.stream_chat(tokenizer, "Olá", history=[]):
|
| 205 |
+
print(response[length:], flush=True, end="")
|
| 206 |
+
length = len(response)
|
| 207 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
# Open Portuguese LLM Leaderboard Evaluation Results
|
|
|
|
| 222 |
|FaQuAD NLI | 81.36|
|
| 223 |
|HateBR Binary | 81.72|
|
| 224 |
|PT Hate Speech Binary | 73.66|
|
| 225 |
+
|tweetSentBR | 70.11|
|
|
|