Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -9,82 +9,88 @@ tags:
|
|
| 9 |
- moe
|
| 10 |
- instruction-following
|
| 11 |
- 8-bit
|
|
|
|
| 12 |
model_type: kimi_k2
|
| 13 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
- **Hidden Size:** 7168
|
| 28 |
-
- **Layers:** 61
|
| 29 |
-
- **Context Length:** 262,144 tokens
|
| 30 |
-
- **Quantization:** MLX 8-bit (8.501 bits per weight)
|
| 31 |
-
- **Size:** 1.0 TB
|
| 32 |
-
- **Original Model:** [moonshotai/Kimi-K2-Instruct-0905](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905)
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
##
|
|
|
|
|
|
|
| 44 |
|
| 45 |
```bash
|
| 46 |
pip install mlx-lm
|
| 47 |
```
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
### Python API
|
| 52 |
|
| 53 |
```python
|
| 54 |
from mlx_lm import load, generate
|
| 55 |
|
| 56 |
-
# Load the model
|
| 57 |
model, tokenizer = load("richardyoung/Kimi-K2-Instruct-0905-MLX-8bit")
|
| 58 |
-
|
| 59 |
-
# Generate text
|
| 60 |
-
prompt = "Explain quantum computing in simple terms."
|
| 61 |
-
response = generate(model, tokenizer, prompt=prompt, max_tokens=500)
|
| 62 |
-
print(response)
|
| 63 |
```
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
```bash
|
| 68 |
mlx_lm.generate \
|
| 69 |
--model richardyoung/Kimi-K2-Instruct-0905-MLX-8bit \
|
| 70 |
-
--prompt "Write a Python
|
| 71 |
--max-tokens 500
|
| 72 |
```
|
| 73 |
|
| 74 |
-
### Chat
|
| 75 |
-
|
| 76 |
-
The model uses the ChatML format:
|
| 77 |
-
|
| 78 |
-
```
|
| 79 |
-
<|im_start|>system
|
| 80 |
-
You are a helpful assistant.<|im_end|>
|
| 81 |
-
<|im_start|>user
|
| 82 |
-
{user message}<|im_end|>
|
| 83 |
-
<|im_start|>assistant
|
| 84 |
-
{assistant response}<|im_end|>
|
| 85 |
-
```
|
| 86 |
-
|
| 87 |
-
### Multi-turn Conversation Example
|
| 88 |
|
| 89 |
```python
|
| 90 |
from mlx_lm import load, generate
|
|
@@ -92,55 +98,75 @@ from mlx_lm import load, generate
|
|
| 92 |
model, tokenizer = load("richardyoung/Kimi-K2-Instruct-0905-MLX-8bit")
|
| 93 |
|
| 94 |
conversation = """<|im_start|>system
|
| 95 |
-
You are a helpful coding
|
| 96 |
<|im_start|>user
|
| 97 |
-
|
| 98 |
<|im_start|>assistant
|
| 99 |
"""
|
| 100 |
|
| 101 |
-
response = generate(model, tokenizer, prompt=conversation, max_tokens=
|
| 102 |
print(response)
|
| 103 |
```
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
- 1.1 TB free disk space
|
| 109 |
-
- 64 GB RAM (unified memory)
|
| 110 |
-
- Apple Silicon Mac (M1 or later)
|
| 111 |
-
- macOS 12.0 or later
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
- M2 Ultra, M3 Max, or M4 Max/Ultra
|
| 116 |
-
- Fast SSD storage
|
| 117 |
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
- **MLX 4-bit** (coming soon): `richardyoung/Kimi-K2-Instruct-0905-MLX-4bit`
|
| 131 |
-
- **Original Model:** [moonshotai/Kimi-K2-Instruct-0905](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905)
|
| 132 |
|
| 133 |
-
##
|
| 134 |
|
| 135 |
-
|
| 136 |
-
- Very large model size (1 TB) requires significant storage
|
| 137 |
-
- High memory requirements (64+ GB unified memory)
|
| 138 |
-
- Inference speed depends heavily on available RAM and SSD speed
|
| 139 |
-
- Chinese-English bilingual model, optimized for both languages
|
| 140 |
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
This model was quantized using MLX's built-in quantization:
|
| 146 |
|
|
@@ -148,22 +174,46 @@ This model was quantized using MLX's built-in quantization:
|
|
| 148 |
mlx_lm.convert \
|
| 149 |
--hf-path moonshotai/Kimi-K2-Instruct-0905 \
|
| 150 |
--mlx-path Kimi-K2-Instruct-0905-MLX-8bit \
|
| 151 |
-
-q --q-bits 8
|
|
|
|
| 152 |
```
|
| 153 |
|
| 154 |
-
**Result:** 8.501 bits per weight (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
|
| 159 |
-
- **KV Compression:** LoRA-based key-value compression (rank 512)
|
| 160 |
-
- **Query Compression:** Q-LoRA rank 1536
|
| 161 |
-
- **MoE Routing:** Top-8 expert selection with sigmoid scoring
|
| 162 |
-
- **Training:** Pre-quantized with FP8 (e4m3) in base model
|
| 163 |
|
| 164 |
-
##
|
| 165 |
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
```bibtex
|
| 169 |
@misc{kimi-k2-2025,
|
|
@@ -174,18 +224,21 @@ If you use this model, please cite the original Kimi K2 work:
|
|
| 174 |
}
|
| 175 |
```
|
| 176 |
|
| 177 |
-
##
|
| 178 |
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
|
| 183 |
-
|
| 184 |
-
- **MLX Framework:** [GitHub](https://github.com/ml-explore/mlx)
|
| 185 |
-
- **MLX LM:** [GitHub](https://github.com/ml-explore/mlx-examples/tree/main/llms)
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
-
**Format:** MLX 8-bit
|
| 191 |
-
**Created:** 2025-10-25
|
|
|
|
| 9 |
- moe
|
| 10 |
- instruction-following
|
| 11 |
- 8-bit
|
| 12 |
+
- apple-silicon
|
| 13 |
model_type: kimi_k2
|
| 14 |
pipeline_tag: text-generation
|
| 15 |
+
language:
|
| 16 |
+
- en
|
| 17 |
+
- zh
|
| 18 |
+
library_name: mlx
|
| 19 |
---
|
| 20 |
|
| 21 |
+
<div align="center">
|
| 22 |
|
| 23 |
+
# 🌙 Kimi K2 Instruct - MLX 8-bit
|
| 24 |
|
| 25 |
+
### State-of-the-Art 671B MoE Model, Optimized for Apple Silicon
|
| 26 |
|
| 27 |
+
[](https://github.com/ml-explore/mlx)
|
| 28 |
+
[](https://huggingface.co/richardyoung/Kimi-K2-Instruct-0905-MLX-8bit)
|
| 29 |
+
[](https://github.com/ml-explore/mlx)
|
| 30 |
+
[](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905)
|
| 31 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
**[Original Model](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905)** | **[MLX Framework](https://github.com/ml-explore/mlx)** | **[More Quantizations](#-other-quantization-options)**
|
| 34 |
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
</div>
|
| 38 |
+
|
| 39 |
+
## 📖 What is This?
|
| 40 |
+
|
| 41 |
+
This is a **high-quality 8-bit quantized version** of Kimi K2 Instruct, optimized to run on **Apple Silicon** (M1/M2/M3/M4) Macs using the MLX framework. Think of it as taking a massive 671-billion parameter AI model and compressing it down to ~1 TB while keeping almost all of its intelligence intact!
|
| 42 |
+
|
| 43 |
+
### ✨ Why You'll Love It
|
| 44 |
+
|
| 45 |
+
- 🚀 **Massive Context Window** - Handle up to 262,144 tokens (~200,000 words!)
|
| 46 |
+
- 🧠 **671B Parameters** - One of the most capable open models available
|
| 47 |
+
- ⚡ **Apple Silicon Native** - Fully optimized for M-series chips with Metal acceleration
|
| 48 |
+
- 🎯 **8-bit Precision** - Best quality-to-size ratio for serious work
|
| 49 |
+
- 🌏 **Bilingual** - Fluent in both English and Chinese
|
| 50 |
+
- 💬 **Instruction-Tuned** - Ready for conversations, coding, analysis, and more
|
| 51 |
|
| 52 |
+
## 🎯 Quick Start
|
| 53 |
+
|
| 54 |
+
### Installation
|
| 55 |
|
| 56 |
```bash
|
| 57 |
pip install mlx-lm
|
| 58 |
```
|
| 59 |
|
| 60 |
+
### Your First Generation (3 lines of code!)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
```python
|
| 63 |
from mlx_lm import load, generate
|
| 64 |
|
|
|
|
| 65 |
model, tokenizer = load("richardyoung/Kimi-K2-Instruct-0905-MLX-8bit")
|
| 66 |
+
print(generate(model, tokenizer, prompt="Explain quantum entanglement simply:", max_tokens=200))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
```
|
| 68 |
|
| 69 |
+
That's it! 🎉
|
| 70 |
+
|
| 71 |
+
## 💻 System Requirements
|
| 72 |
+
|
| 73 |
+
| Component | Minimum | Recommended |
|
| 74 |
+
|-----------|---------|-------------|
|
| 75 |
+
| **Mac** | M1 or newer | M2 Ultra / M3 Max / M4 Max+ |
|
| 76 |
+
| **Memory** | 64 GB unified | 128 GB+ unified |
|
| 77 |
+
| **Storage** | 1.1 TB free | Fast SSD (2+ TB) |
|
| 78 |
+
| **macOS** | 12.0+ | Latest version |
|
| 79 |
+
|
| 80 |
+
> ⚠️ **Note:** This is a HUGE model! Make sure you have enough RAM and storage.
|
| 81 |
+
|
| 82 |
+
## 📚 Usage Examples
|
| 83 |
+
|
| 84 |
+
### Command Line Interface
|
| 85 |
|
| 86 |
```bash
|
| 87 |
mlx_lm.generate \
|
| 88 |
--model richardyoung/Kimi-K2-Instruct-0905-MLX-8bit \
|
| 89 |
+
--prompt "Write a Python script to analyze CSV files." \
|
| 90 |
--max-tokens 500
|
| 91 |
```
|
| 92 |
|
| 93 |
+
### Chat Conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
```python
|
| 96 |
from mlx_lm import load, generate
|
|
|
|
| 98 |
model, tokenizer = load("richardyoung/Kimi-K2-Instruct-0905-MLX-8bit")
|
| 99 |
|
| 100 |
conversation = """<|im_start|>system
|
| 101 |
+
You are a helpful AI assistant specialized in coding and problem-solving.<|im_end|>
|
| 102 |
<|im_start|>user
|
| 103 |
+
Can you help me optimize this Python code?<|im_end|>
|
| 104 |
<|im_start|>assistant
|
| 105 |
"""
|
| 106 |
|
| 107 |
+
response = generate(model, tokenizer, prompt=conversation, max_tokens=500)
|
| 108 |
print(response)
|
| 109 |
```
|
| 110 |
|
| 111 |
+
### Advanced: Streaming Output
|
| 112 |
+
|
| 113 |
+
```python
|
| 114 |
+
from mlx_lm import load, generate
|
| 115 |
+
|
| 116 |
+
model, tokenizer = load("richardyoung/Kimi-K2-Instruct-0905-MLX-8bit")
|
| 117 |
+
|
| 118 |
+
for token in generate(
|
| 119 |
+
model,
|
| 120 |
+
tokenizer,
|
| 121 |
+
prompt="Tell me about the future of AI:",
|
| 122 |
+
max_tokens=500,
|
| 123 |
+
stream=True
|
| 124 |
+
):
|
| 125 |
+
print(token, end="", flush=True)
|
| 126 |
+
```
|
| 127 |
|
| 128 |
+
## 🏗️ Architecture Highlights
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
<details>
|
| 131 |
+
<summary><b>Click to expand technical details</b></summary>
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
### Model Specifications
|
| 134 |
|
| 135 |
+
| Feature | Value |
|
| 136 |
+
|---------|-------|
|
| 137 |
+
| **Total Parameters** | ~671 Billion |
|
| 138 |
+
| **Architecture** | DeepSeek V3 (MoE) |
|
| 139 |
+
| **Experts** | 384 routed + 1 shared |
|
| 140 |
+
| **Active Experts** | 8 per token |
|
| 141 |
+
| **Hidden Size** | 7168 |
|
| 142 |
+
| **Layers** | 61 |
|
| 143 |
+
| **Heads** | 56 |
|
| 144 |
+
| **Context Length** | 262,144 tokens |
|
| 145 |
+
| **Quantization** | 8.501 bits per weight |
|
| 146 |
|
| 147 |
+
### Advanced Features
|
| 148 |
|
| 149 |
+
- **🎯 YaRN Rope Scaling** - 64x factor for extended context
|
| 150 |
+
- **🗜️ KV Compression** - LoRA-based (rank 512)
|
| 151 |
+
- **⚡ Query Compression** - Q-LoRA (rank 1536)
|
| 152 |
+
- **🧮 MoE Routing** - Top-8 expert selection with sigmoid scoring
|
| 153 |
+
- **🔧 FP8 Training** - Pre-quantized with e4m3 precision
|
| 154 |
|
| 155 |
+
</details>
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
## 🎨 Other Quantization Options
|
| 158 |
|
| 159 |
+
Choose the right balance for your needs:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
| Quantization | Size | Quality | Speed | Best For |
|
| 162 |
+
|--------------|------|---------|-------|----------|
|
| 163 |
+
| **8-bit** (you are here) | ~1 TB | ⭐⭐⭐⭐⭐ | ⭐⭐⭐ | Production, best quality |
|
| 164 |
+
| [6-bit](https://huggingface.co/richardyoung/Kimi-K2-Instruct-0905-MLX-6bit) | ~800 GB | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | Sweet spot for most users |
|
| 165 |
+
| [4-bit](https://huggingface.co/richardyoung/Kimi-K2-Instruct-0905-MLX-4bit) | ~570 GB | ⭐⭐⭐ | ⭐⭐⭐⭐⭐ | Faster inference |
|
| 166 |
+
| [2-bit](https://huggingface.co/richardyoung/Kimi-K2-Instruct-0905-MLX-2bit) | ~320 GB | ⭐⭐ | ⭐⭐⭐⭐⭐ | Experimental |
|
| 167 |
+
| [Original](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905) | ~5 TB | ⭐⭐⭐⭐⭐ | ⭐⭐ | Research only |
|
| 168 |
|
| 169 |
+
## 🔧 How It Was Made
|
| 170 |
|
| 171 |
This model was quantized using MLX's built-in quantization:
|
| 172 |
|
|
|
|
| 174 |
mlx_lm.convert \
|
| 175 |
--hf-path moonshotai/Kimi-K2-Instruct-0905 \
|
| 176 |
--mlx-path Kimi-K2-Instruct-0905-MLX-8bit \
|
| 177 |
+
-q --q-bits 8 \
|
| 178 |
+
--trust-remote-code
|
| 179 |
```
|
| 180 |
|
| 181 |
+
**Result:** 8.501 bits per weight (includes metadata overhead)
|
| 182 |
+
|
| 183 |
+
## ⚡ Performance Tips
|
| 184 |
+
|
| 185 |
+
<details>
|
| 186 |
+
<summary><b>Getting the best performance</b></summary>
|
| 187 |
|
| 188 |
+
1. **Close other applications** - Free up as much RAM as possible
|
| 189 |
+
2. **Use an external SSD** - If your internal drive is full
|
| 190 |
+
3. **Monitor memory** - Watch Activity Monitor during inference
|
| 191 |
+
4. **Adjust batch size** - If you get OOM errors, reduce max_tokens
|
| 192 |
+
5. **Keep your Mac cool** - Good airflow helps maintain peak performance
|
| 193 |
|
| 194 |
+
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
## ⚠️ Known Limitations
|
| 197 |
|
| 198 |
+
- 🍎 **Apple Silicon Only** - Won't work on Intel Macs or NVIDIA GPUs
|
| 199 |
+
- 💾 **Huge Storage Needs** - Make sure you have 1.1 TB+ free
|
| 200 |
+
- 🐏 **RAM Intensive** - Needs 64+ GB unified memory minimum
|
| 201 |
+
- 🐌 **Slower on M1** - Best performance on M2 Ultra or newer
|
| 202 |
+
- 🌐 **Bilingual Focus** - Optimized for English and Chinese
|
| 203 |
+
|
| 204 |
+
## 📄 License
|
| 205 |
+
|
| 206 |
+
Apache 2.0 - Same as the original model. Free for commercial use!
|
| 207 |
+
|
| 208 |
+
## 🙏 Acknowledgments
|
| 209 |
+
|
| 210 |
+
- **Original Model:** [Moonshot AI](https://www.moonshot.cn/) for creating Kimi K2
|
| 211 |
+
- **Framework:** Apple's [MLX team](https://github.com/ml-explore/mlx) for the amazing framework
|
| 212 |
+
- **Inspiration:** DeepSeek V3 architecture
|
| 213 |
+
|
| 214 |
+
## 📚 Citation
|
| 215 |
+
|
| 216 |
+
If you use this model in your research or product, please cite:
|
| 217 |
|
| 218 |
```bibtex
|
| 219 |
@misc{kimi-k2-2025,
|
|
|
|
| 224 |
}
|
| 225 |
```
|
| 226 |
|
| 227 |
+
## 🔗 Useful Links
|
| 228 |
|
| 229 |
+
- 📦 **Original Model:** [moonshotai/Kimi-K2-Instruct-0905](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905)
|
| 230 |
+
- 🛠️ **MLX Framework:** [GitHub](https://github.com/ml-explore/mlx)
|
| 231 |
+
- 📖 **MLX LM Docs:** [GitHub](https://github.com/ml-explore/mlx-examples/tree/main/llms)
|
| 232 |
+
- 💬 **Discussions:** [Ask questions here!](https://huggingface.co/richardyoung/Kimi-K2-Instruct-0905-MLX-8bit/discussions)
|
| 233 |
|
| 234 |
+
---
|
| 235 |
|
| 236 |
+
<div align="center">
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
**Quantized with ❤️ by richardyoung**
|
| 239 |
+
|
| 240 |
+
*If you find this useful, please ⭐ star the repo and share with others!*
|
| 241 |
+
|
| 242 |
+
**Created:** October 2025 | **Format:** MLX 8-bit
|
| 243 |
|
| 244 |
+
</div>
|
|
|
|
|
|