Update README.md
Browse files
README.md
CHANGED
|
@@ -56,7 +56,7 @@ The following code snippet demonstrates how to use Sarvam-Translate using Transf
|
|
| 56 |
```python
|
| 57 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 58 |
|
| 59 |
-
model_name = "sarvamai/sarvam-translate"
|
| 60 |
|
| 61 |
# Load tokenizer and model
|
| 62 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -82,12 +82,19 @@ text = tokenizer.apply_chat_template(
|
|
| 82 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 83 |
|
| 84 |
# Generate the output
|
| 85 |
-
generated_ids = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 87 |
output_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 88 |
|
| 89 |
print("Input:", input_txt)
|
| 90 |
print("Translation:", output_text)
|
|
|
|
| 91 |
```
|
| 92 |
|
| 93 |
## VLLM Deployment
|
|
|
|
| 56 |
```python
|
| 57 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 58 |
|
| 59 |
+
model_name = "sarvamai/sarvam-translate"
|
| 60 |
|
| 61 |
# Load tokenizer and model
|
| 62 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 82 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 83 |
|
| 84 |
# Generate the output
|
| 85 |
+
generated_ids = model.generate(
|
| 86 |
+
**model_inputs,
|
| 87 |
+
max_new_tokens=1024,
|
| 88 |
+
do_sample=True,
|
| 89 |
+
temperature=0.01,
|
| 90 |
+
num_return_sequences=1
|
| 91 |
+
)
|
| 92 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 93 |
output_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 94 |
|
| 95 |
print("Input:", input_txt)
|
| 96 |
print("Translation:", output_text)
|
| 97 |
+
|
| 98 |
```
|
| 99 |
|
| 100 |
## VLLM Deployment
|