Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,3 +1,141 @@
|
|
| 1 |
---
|
| 2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: nvidia-open-model-license
|
| 4 |
+
license_link: >-
|
| 5 |
+
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
|
| 6 |
+
base_model: nvidia/NVIDIA-Nemotron-Nano-9B-v2
|
| 7 |
+
model_creator: nvidia
|
| 8 |
+
model_name: NVIDIA-Nemotron-Nano-9B-v2
|
| 9 |
+
quantized_by: Second State Inc.
|
| 10 |
+
pipeline_tag: text-generation
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
- es
|
| 14 |
+
- fr
|
| 15 |
+
- de
|
| 16 |
+
- it
|
| 17 |
+
- ja
|
| 18 |
+
library_name: transformers
|
| 19 |
---
|
| 20 |
+
|
| 21 |
+
<!-- header start -->
|
| 22 |
+
<!-- 200823 -->
|
| 23 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
| 24 |
+
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
| 25 |
+
</div>
|
| 26 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
| 27 |
+
<!-- header end -->
|
| 28 |
+
|
| 29 |
+
# NVIDIA-Nemotron-Nano-9B-v2-GGUF
|
| 30 |
+
|
| 31 |
+
## Original Model
|
| 32 |
+
|
| 33 |
+
[nvidia/NVIDIA-Nemotron-Nano-9B-v2](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2)
|
| 34 |
+
|
| 35 |
+
## Run with LlamaEdge
|
| 36 |
+
|
| 37 |
+
- LlamaEdge version: coming soon
|
| 38 |
+
|
| 39 |
+
<!-- - LlamaEdge version: [v0.25.1](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.25.1) and above -->
|
| 40 |
+
|
| 41 |
+
- Prompt template
|
| 42 |
+
|
| 43 |
+
- Prompt type: `nemotron-2-chat`
|
| 44 |
+
|
| 45 |
+
- Prompt string
|
| 46 |
+
- `Thinking` mode
|
| 47 |
+
|
| 48 |
+
```text
|
| 49 |
+
<SPECIAL_10>System
|
| 50 |
+
You are a helpful assistant.
|
| 51 |
+
|
| 52 |
+
<SPECIAL_11>User
|
| 53 |
+
Hi, can you explain what quantum computing is? /think
|
| 54 |
+
|
| 55 |
+
<SPECIAL_11>Assistant
|
| 56 |
+
<think>
|
| 57 |
+
The user is asking about quantum computing, I should give a simple explanation.
|
| 58 |
+
</think>
|
| 59 |
+
Quantum computing uses principles of quantum mechanics, such as superposition and entanglement, to perform computations that would be hard for classical computers.
|
| 60 |
+
<SPECIAL_12>
|
| 61 |
+
|
| 62 |
+
<SPECIAL_11>User
|
| 63 |
+
That sounds complicated. Can you give me an example? /think
|
| 64 |
+
|
| 65 |
+
<SPECIAL_11>Assistant
|
| 66 |
+
<think>
|
| 67 |
+
I should give a concrete example, like Shor’s algorithm or Grover’s algorithm, but in simple terms.
|
| 68 |
+
</think>
|
| 69 |
+
For example, a quantum computer can factor very large numbers much faster than classical computers, which could break some encryption methods.
|
| 70 |
+
<SPECIAL_12>
|
| 71 |
+
|
| 72 |
+
<SPECIAL_11>User
|
| 73 |
+
Okay, explain it in a simpler way for a 10-year-old. /think
|
| 74 |
+
|
| 75 |
+
<SPECIAL_11>Assistant
|
| 76 |
+
<think>
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
- `No-thinking` mode
|
| 80 |
+
|
| 81 |
+
```text
|
| 82 |
+
<SPECIAL_10>System
|
| 83 |
+
You are a helpful assistant.
|
| 84 |
+
|
| 85 |
+
/no_think
|
| 86 |
+
|
| 87 |
+
<SPECIAL_11>User
|
| 88 |
+
Hi, can you explain what quantum computing is? /no_think
|
| 89 |
+
|
| 90 |
+
<SPECIAL_11>Assistant
|
| 91 |
+
<think></think>
|
| 92 |
+
Quantum computing is a type of computing that uses the rules of quantum mechanics to solve certain problems faster than regular computers.
|
| 93 |
+
<SPECIAL_12>
|
| 94 |
+
|
| 95 |
+
<SPECIAL_11>User
|
| 96 |
+
That sounds complicated. Can you give me an example? /no_think
|
| 97 |
+
|
| 98 |
+
<SPECIAL_11>Assistant
|
| 99 |
+
<think></think>
|
| 100 |
+
For example, quantum computers could quickly factor very large numbers, which is important for cryptography.
|
| 101 |
+
<SPECIAL_12>
|
| 102 |
+
|
| 103 |
+
<SPECIAL_11>User
|
| 104 |
+
Okay, explain it even more simply. /no_think
|
| 105 |
+
|
| 106 |
+
<SPECIAL_11>Assistant
|
| 107 |
+
<think></think>
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
- Context size: `128000`
|
| 111 |
+
|
| 112 |
+
- Run as LlamaEdge service
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
wasmedge --dir .:. \
|
| 116 |
+
--nn-preload default:GGML:AUTO:NVIDIA-Nemotron-Nano-9B-v2-Q5_K_M.gguf \
|
| 117 |
+
llama-api-server.wasm \
|
| 118 |
+
--prompt-template nemotron-2-chat \
|
| 119 |
+
--ctx-size 128000 \
|
| 120 |
+
--model-name nemotron-nano-v2
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
## Quantized GGUF Models
|
| 124 |
+
|
| 125 |
+
| Name | Quant method | Bits | Size | Use case |
|
| 126 |
+
| ---- | ---- | ---- | ---- | ----- |
|
| 127 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q2_K.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q2_K.gguf) | Q2_K | 2 | 5.01 GB| smallest, significant quality loss - not recommended for most purposes |
|
| 128 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_L.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q3_K_L.gguf) | Q3_K_L | 3 | 5.49 GB| small, substantial quality loss |
|
| 129 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_M.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q3_K_M.gguf) | Q3_K_M | 3 | 5.38 GB| very small, high quality loss |
|
| 130 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q3_K_S.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q3_K_S.gguf) | Q3_K_S | 3 | 5.13 GB| very small, high quality loss |
|
| 131 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q4_0.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q4_0.gguf) | Q4_0 | 4 | 5.31 GB| legacy; small, very high quality loss - prefer using Q3_K_M |
|
| 132 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M.gguf) | Q4_K_M | 4 | 6.53 GB| medium, balanced quality - recommended |
|
| 133 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q4_K_S.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_S.gguf) | Q4_K_S | 4 | 6.21 GB| small, greater quality loss |
|
| 134 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q5_0.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q5_0.gguf) | Q5_0 | 5 | 6.35 GB| legacy; medium, balanced quality - prefer using Q4_K_M |
|
| 135 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q5_K_M.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q5_K_M.gguf) | Q5_K_M | 5 | 7.07 GB| large, very low quality loss - recommended |
|
| 136 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q5_K_S.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q5_K_S.gguf) | Q5_K_S | 5 | 6.78 GB| large, low quality loss - recommended |
|
| 137 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q6_K.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-Q6_K.gguf) | Q6_K | 6 | 9.14 GB| very large, extremely low quality loss |
|
| 138 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-Q8_0.gguf](https://huggingface.co/second-state/Nemotron-Mini-4B-Instruct-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-f16.gguf) | Q8_0 | 8 | 17.8 GB| very large, extremely low quality loss - not recommended |
|
| 139 |
+
| [NVIDIA-Nemotron-Nano-9B-v2-f16.gguf](https://huggingface.co/second-state/NVIDIA-Nemotron-Nano-9B-v2-GGUF/blob/main/NVIDIA-Nemotron-Nano-9B-v2-f16-00001-of-00003.gguf) | f16 | 16 | 30.0 GB| |
|
| 140 |
+
|
| 141 |
+
*Quantized with llama.cpp b6315.*
|