1inkusFace commited on
Commit
3d21954
·
verified ·
1 Parent(s): 526cdb6

Update skyreelsinfer/pipelines/pipeline_skyreels_video.py

Browse files
skyreelsinfer/pipelines/pipeline_skyreels_video.py CHANGED
@@ -14,7 +14,7 @@ from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import MultiPipeli
14
  from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import PipelineCallback
15
  from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
16
  from PIL import Image
17
-
18
 
19
  def resizecrop(image, th, tw):
20
  w, h = image.size
@@ -240,7 +240,7 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
240
  batch_size = len(prompt)
241
  else:
242
  batch_size = prompt_embeds.shape[0]
243
- pipe.text_encoder.to("cuda")
244
 
245
  # 3. Encode input prompt
246
  (
@@ -339,8 +339,8 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
339
  if hasattr(self, "text_encoder_to_cpu"):
340
  self.text_encoder_to_cpu()
341
  pipe.text_encoder.to("cpu")
342
- pipe.vae.to("cpu")
343
- torch.cuda.empty_cache()
344
 
345
  with self.progress_bar(total=num_inference_steps) as progress_bar:
346
  for i, t in enumerate(timesteps):
@@ -414,7 +414,7 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
414
  progress_bar.update()
415
 
416
  if not output_type == "latent":
417
- pipe.vae.to("cuda")
418
  latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
419
  video = self.vae.decode(latents, return_dict=False)[0]
420
  video = self.video_processor.postprocess_video(video, output_type=output_type)
 
14
  from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import PipelineCallback
15
  from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
16
  from PIL import Image
17
+ import gc
18
 
19
  def resizecrop(image, th, tw):
20
  w, h = image.size
 
240
  batch_size = len(prompt)
241
  else:
242
  batch_size = prompt_embeds.shape[0]
243
+ #pipe.text_encoder.to("cuda")
244
 
245
  # 3. Encode input prompt
246
  (
 
339
  if hasattr(self, "text_encoder_to_cpu"):
340
  self.text_encoder_to_cpu()
341
  pipe.text_encoder.to("cpu")
342
+ #pipe.vae.to("cpu")
343
+ #torch.cuda.empty_cache()
344
 
345
  with self.progress_bar(total=num_inference_steps) as progress_bar:
346
  for i, t in enumerate(timesteps):
 
414
  progress_bar.update()
415
 
416
  if not output_type == "latent":
417
+ # pipe.vae.to("cuda")
418
  latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
419
  video = self.vae.decode(latents, return_dict=False)[0]
420
  video = self.video_processor.postprocess_video(video, output_type=output_type)