import spaces import gradio as gr import sys import time import os import random from PIL import Image import torch import asyncio # Import asyncio from skyreelsinfer import TaskType from skyreelsinfer.offload import OffloadConfig from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError from diffusers.utils import export_to_video from diffusers.utils import load_image # os.environ["CUDA_VISIBLE_DEVICES"] = "" # Uncomment if needed os.environ["SAFETENSORS_FAST_GPU"] = "1" os.putenv("HF_HUB_ENABLE_HF_TRANSFER", "1") # No longer needed here: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Use gr.State to hold the predictor. Initialize it to None. predictor_state = gr.State(None) device="cuda:0" if torch.cuda.is_available() else "cpu" # Pass device to the constructor def init_predictor(task_type: str): try: predictor = SkyReelsVideoInfer( task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V, model_id="Skywork/skyreels-v1-Hunyuan-i2v", # Adjust model ID as needed quant_model=True, is_offload=True, # Consider removing if you have enough GPU memory offload_config=OffloadConfig( high_cpu_memory=True, parameters_level=True, ), use_multiprocessing=False, ) return predictor except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e: print(f"Error: Model not found. Details: {e}") return None except Exception as e: print(f"Error loading model: {e}") return None # Make generate_video async async def generate_video(prompt, image_file, predictor): if image_file is None: return gr.Error("Error: For i2v, provide an image.") if not isinstance(prompt, str) or not prompt.strip(): return gr.Error("Error: Please provide a prompt.") if predictor is None: return gr.Error("Error: Model not loaded.") random.seed(time.time()) seed = int(random.randrange(4294967294)) kwargs = { "prompt": prompt, "height": 256, "width": 256, "num_frames": 24, "num_inference_steps": 30, "seed": int(seed), "guidance_scale": 7.0, "embedded_guidance_scale": 1.0, "negative_prompt": "bad quality, blur", "cfg_for": False, } try: # Load the image and move it to the correct device *before* inference image = load_image(image=image_file.name) # No need to manually move to device. SkyReelsVideoInfer should handle it. kwargs["image"] = image except Exception as e: return gr.Error(f"Image loading error: {e}") try: output = predictor.inference(kwargs) frames = output except Exception as e: return gr.Error(f"Inference error: {e}"), None # Return None for predictor on error save_dir = "./result/i2v" # Consistent directory os.makedirs(save_dir, exist_ok=True) video_out_file = os.path.join(save_dir, f"{prompt[:100]}_{int(seed)}.mp4") print(f"Generating video: {video_out_file}") try: export_to_video(frames, video_out_file, fps=24) except Exception as e: return gr.Error(f"Video export error: {e}"), None # Return None for predictor return video_out_file, predictor # Return updated predictor def display_image(file): if file is not None: return Image.open(file.name) else: return None async def load_model(): predictor = init_predictor('i2v') return predictor async def main(): with gr.Blocks() as demo: image_file = gr.File(label="Image Prompt (Required)", file_types=["image"]) image_file_preview = gr.Image(label="Image Prompt Preview", interactive=False) prompt_textbox = gr.Text(label="Prompt") generate_button = gr.Button("Generate") output_video = gr.Video(label="Output Video") image_file.change( display_image, inputs=[image_file], outputs=[image_file_preview] ) generate_button.click( fn=generate_video, inputs=[prompt_textbox, image_file, predictor_state], outputs=[output_video, predictor_state], # Output predictor_state ) predictor_state.value = await load_model() # load and set predictor await demo.launch() if __name__ == "__main__": asyncio.run(main())