import spaces import gradio as gr import sys import time import os import random os.environ["CUDA_VISIBLE_DEVICES"] = "" # Create the gr.State component *outside* the gr.Blocks context predictor_state = gr.State(None) def get_transformer_model_id(task_type: str) -> str: if task_type == "i2v": return "Skywork/skyreels-v1-Hunyuan-i2v" else: return "Skywork/skyreels-v1-Hunyuan-t2v" @spaces.GPU(duration=120) def init_predictor(task_type: str): # ALL IMPORTS NOW INSIDE THIS FUNCTION import torch from skyreelsinfer import TaskType from skyreelsinfer.offload import OffloadConfig from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError try: predictor = SkyReelsVideoInfer( task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V, model_id=get_transformer_model_id(task_type), quant_model=True, is_offload=True, offload_config=OffloadConfig( high_cpu_memory=True, parameters_level=True, ), use_multiprocessing=False, ) return "Model loaded successfully!", predictor # Return predictor except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e: return f"Error: Model not found. Details: {e}", None except Exception as e: return f"Error loading model: {e}", None @spaces.GPU(duration=80) def generate_video(prompt, seed, image, task_type, predictor): # predictor as argument # IMPORTS INSIDE THIS FUNCTION TOO from diffusers.utils import export_to_video from diffusers.utils import load_image import os if task_type == "i2v" and not isinstance(image, str): return "Error: For i2v, provide image path.", "{}" if not isinstance(prompt, str) or not isinstance(seed, (int, float)): return "Error: Invalid inputs.", "{}" if seed == -1: random.seed(time.time()) seed = int(random.randrange(4294967294)) kwargs = { "prompt": prompt, "height": 256, "width": 256, "num_frames": 24, "num_inference_steps": 30, "seed": int(seed), "guidance_scale": 7.0, "embedded_guidance_scale": 1.0, "negative_prompt": "bad quality, blur", "cfg_for": False, } if task_type == "i2v": if image is None or not os.path.exists(image): return "Error: Image not found.", "{}" try: kwargs["image"] = load_image(image=image) except Exception as e: return f"Error loading image: {e}", "{}" try: if predictor is None: return "Error: Model not init.", "{}" output = predictor.inference(kwargs) frames = output save_dir = f"./result/{task_type}" os.makedirs(save_dir, exist_ok=True) video_out_file = f"{save_dir}/{prompt[:100]}_{int(seed)}.mp4" print(f"Generating video: {video_out_file}") export_to_video(frames, video_out_file, fps=24) return video_out_file except Exception as e: return f"Error: {e}", "{}" # --- Minimal Gradio Interface --- with gr.Blocks() as demo: task_type_dropdown = gr.Dropdown( choices=["i2v", "t2v"], label="Task", value="t2v", elem_id="task_type" ) load_model_button = gr.Button("Load Model", elem_id="load_button") prompt_textbox = gr.Textbox(label="Prompt", elem_id="prompt") generate_button = gr.Button("Generate", elem_id="generate_button") output_textbox = gr.Textbox(label="Output", elem_id="output") # Just a textbox output_video = gr.Video(label="Output Video", elem_id="output_video") # Just a textbox load_model_button.click( fn=init_predictor, inputs=[task_type_dropdown], outputs=[output_textbox, predictor_state], # Correct order of outputs ) generate_button.click( fn=generate_video, inputs=[prompt_textbox, task_type_dropdown, predictor_state], outputs=[output_video], ) demo.launch()