Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-
|
|
| 16 |
# Function to generate embeddings from an image
|
| 17 |
def generate_embedding(image):
|
| 18 |
if image is None:
|
| 19 |
-
return None
|
| 20 |
|
| 21 |
# Convert to PIL Image if needed
|
| 22 |
if not isinstance(image, Image.Image):
|
|
@@ -47,14 +47,14 @@ def generate_embedding(image):
|
|
| 47 |
embedding_list = list(result)
|
| 48 |
else:
|
| 49 |
print("Result is None")
|
| 50 |
-
return None
|
| 51 |
except:
|
| 52 |
print(f"Couldn't convert result of type {type(result)} to list")
|
| 53 |
-
return None
|
| 54 |
|
| 55 |
# Ensure we have a valid embedding list
|
| 56 |
if embedding_list is None:
|
| 57 |
-
return None
|
| 58 |
|
| 59 |
# Calculate embedding dimension
|
| 60 |
embedding_dim = len(embedding_list)
|
|
@@ -62,10 +62,10 @@ def generate_embedding(image):
|
|
| 62 |
return {
|
| 63 |
"embedding": embedding_list,
|
| 64 |
"dimension": embedding_dim
|
| 65 |
-
}
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error generating embedding: {str(e)}")
|
| 68 |
-
return None
|
| 69 |
|
| 70 |
# Function to generate embeddings from an image URL
|
| 71 |
def embed_image_from_url(image_url):
|
|
|
|
| 16 |
# Function to generate embeddings from an image
|
| 17 |
def generate_embedding(image):
|
| 18 |
if image is None:
|
| 19 |
+
return None, "No image provided"
|
| 20 |
|
| 21 |
# Convert to PIL Image if needed
|
| 22 |
if not isinstance(image, Image.Image):
|
|
|
|
| 47 |
embedding_list = list(result)
|
| 48 |
else:
|
| 49 |
print("Result is None")
|
| 50 |
+
return None, "Failed to generate embedding"
|
| 51 |
except:
|
| 52 |
print(f"Couldn't convert result of type {type(result)} to list")
|
| 53 |
+
return None, "Failed to process embedding"
|
| 54 |
|
| 55 |
# Ensure we have a valid embedding list
|
| 56 |
if embedding_list is None:
|
| 57 |
+
return None, "Failed to generate embedding"
|
| 58 |
|
| 59 |
# Calculate embedding dimension
|
| 60 |
embedding_dim = len(embedding_list)
|
|
|
|
| 62 |
return {
|
| 63 |
"embedding": embedding_list,
|
| 64 |
"dimension": embedding_dim
|
| 65 |
+
}, f"Dimension: {embedding_dim}"
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error generating embedding: {str(e)}")
|
| 68 |
+
return None, f"Error: {str(e)}"
|
| 69 |
|
| 70 |
# Function to generate embeddings from an image URL
|
| 71 |
def embed_image_from_url(image_url):
|