Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from tensorflow.keras.models import load_model | |
| from PIL import Image | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from io import BytesIO | |
| # Load the trained model | |
| model = load_model('model1.h5') # Make sure 'model1.h5' is the correct path to your model | |
| # Prediction function for the Gradio app | |
| def predict_and_visualize(img): | |
| # Store the original image size | |
| original_size = img.size | |
| # Convert the input image to the target size expected by the model | |
| img_resized = img.resize((256, 256)) | |
| img_array = np.array(img_resized) / 255.0 # Normalize the image | |
| img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
| # Make a prediction | |
| prediction = model.predict(img_array) | |
| # Assuming the model outputs a single-channel image, normalize to 0-255 range for display | |
| predicted_mask = (prediction[0, :, :, 0] * 255).astype(np.uint8) | |
| # Convert the prediction to a PIL image | |
| prediction_image = Image.fromarray(predicted_mask, mode='L') # 'L' mode is for grayscale | |
| # Resize the predicted image back to the original image size | |
| prediction_image = prediction_image.resize(original_size, Image.NEAREST) | |
| return prediction_image | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=predict_and_visualize, | |
| inputs=gr.Image(type="pil"), # We expect a PIL Image | |
| outputs=gr.Image(type="pil"), # We will return a PIL Image | |
| title="MilitarEye: Military Stealth Camouflage Detector", | |
| description="Please upload an image of a military personnel camouflaged in their surroundings. On the right, the model will attempt to predict the camouflage mask silhouette." | |
| ) | |
| # Launch the Gradio app | |
| iface.launch() | |