from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM, AutoTokenizer from parler_tts import ParlerTTSForConditionalGeneration import torch import soundfile as sf def generate_image_caption(image_path): model_name = "microsoft/Florence-2-large" prompt = "" model = AutoModelForCausalLM.from_pretrained(model_name) processor = AutoProcessor.from_pretrained(model_name) image = Image.open(image_path) inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3, do_sample=False ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] caption = processor.post_process_generation(generated_text, task="", image_size=(image.width, image.height)) return caption def convert_text_to_speech(text, device="cpu"): model_name = "parler-tts/parler_tts_mini_v0.1" model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() return audio_arr