Spaces:
Runtime error
Runtime error
| # Copyright 2025 ByteDance and/or its affiliates. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| from torch import nn | |
| class LayerNorm(torch.nn.LayerNorm): | |
| """Layer normalization module. | |
| :param int nout: output dim size | |
| :param int dim: dimension to be normalized | |
| """ | |
| def __init__(self, nout, dim=-1, eps=1e-5): | |
| """Construct an LayerNorm object.""" | |
| super(LayerNorm, self).__init__(nout, eps=eps) | |
| self.dim = dim | |
| def forward(self, x): | |
| """Apply layer normalization. | |
| :param torch.Tensor x: input tensor | |
| :return: layer normalized tensor | |
| :rtype torch.Tensor | |
| """ | |
| if self.dim == -1: | |
| return super(LayerNorm, self).forward(x) | |
| return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) | |
| class Reshape(nn.Module): | |
| def __init__(self, *args): | |
| super(Reshape, self).__init__() | |
| self.shape = args | |
| def forward(self, x): | |
| return x.view(self.shape) | |
| class Permute(nn.Module): | |
| def __init__(self, *args): | |
| super(Permute, self).__init__() | |
| self.args = args | |
| def forward(self, x): | |
| return x.permute(self.args) | |
| def Embedding(num_embeddings, embedding_dim, padding_idx=None): | |
| m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
| nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
| if padding_idx is not None: | |
| nn.init.constant_(m.weight[padding_idx], 0) | |
| return m | |