Spaces:
Sleeping
Sleeping
Delete app copy.py
Browse files- app copy.py +0 -247
app copy.py
DELETED
|
@@ -1,247 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import onnxruntime as ort
|
| 4 |
-
import torchvision.transforms as transforms
|
| 5 |
-
import json
|
| 6 |
-
import os
|
| 7 |
-
import numpy as np
|
| 8 |
-
import pandas as pd
|
| 9 |
-
import random
|
| 10 |
-
from huggingface_hub import snapshot_download, HfApi
|
| 11 |
-
from transformers import CLIPTokenizer
|
| 12 |
-
|
| 13 |
-
# --- Config ---
|
| 14 |
-
HUB_REPO_ID = "CDL-AMLRT/OpenArenaLeaderboard"
|
| 15 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
-
LOCAL_JSON = "leaderboard.json"
|
| 17 |
-
HUB_JSON = "leaderboard.json"
|
| 18 |
-
MODEL_PATH = "mobilenet_v2_fake_detector.onnx"
|
| 19 |
-
CLIP_IMAGE_ENCODER_PATH = "clip_image_encoder.onnx"
|
| 20 |
-
CLIP_TEXT_ENCODER_PATH = "clip_text_encoder.onnx"
|
| 21 |
-
PROMPT_CSV_PATH = "generate2_1.csv"
|
| 22 |
-
PROMPT_MATCH_THRESHOLD = 10 # percent
|
| 23 |
-
|
| 24 |
-
# --- Download leaderboard + model checkpoint from HF Hub ---
|
| 25 |
-
def load_assets():
|
| 26 |
-
try:
|
| 27 |
-
snapshot_download(
|
| 28 |
-
repo_id=HUB_REPO_ID,
|
| 29 |
-
local_dir=".",
|
| 30 |
-
repo_type="dataset",
|
| 31 |
-
token=HF_TOKEN,
|
| 32 |
-
allow_patterns=[HUB_JSON, MODEL_PATH, CLIP_IMAGE_ENCODER_PATH, CLIP_TEXT_ENCODER_PATH, PROMPT_CSV_PATH]
|
| 33 |
-
)
|
| 34 |
-
except Exception as e:
|
| 35 |
-
print(f"Failed to load assets from HF Hub: {e}")
|
| 36 |
-
|
| 37 |
-
load_assets()
|
| 38 |
-
|
| 39 |
-
# --- Load prompts from CSV ---
|
| 40 |
-
def load_prompts():
|
| 41 |
-
try:
|
| 42 |
-
df = pd.read_csv(PROMPT_CSV_PATH)
|
| 43 |
-
if "prompt" in df.columns:
|
| 44 |
-
return df["prompt"].dropna().tolist()
|
| 45 |
-
else:
|
| 46 |
-
print("CSV missing 'prompt' column.")
|
| 47 |
-
return []
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"Failed to load prompts: {e}")
|
| 50 |
-
return []
|
| 51 |
-
|
| 52 |
-
PROMPT_LIST = load_prompts()
|
| 53 |
-
|
| 54 |
-
def load_initial_state():
|
| 55 |
-
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
|
| 56 |
-
leaderboard_table = [[name, points] for name, points in sorted_scores]
|
| 57 |
-
return gr.update(value=get_random_prompt()), leaderboard_table
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# --- Load leaderboard ---
|
| 61 |
-
def load_leaderboard():
|
| 62 |
-
try:
|
| 63 |
-
with open(HUB_JSON, "r") as f:
|
| 64 |
-
return json.load(f)
|
| 65 |
-
except Exception as e:
|
| 66 |
-
print(f"Failed to read leaderboard: {e}")
|
| 67 |
-
return {}
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
leaderboard_scores = load_leaderboard()
|
| 71 |
-
|
| 72 |
-
# --- Save and push to HF Hub ---
|
| 73 |
-
def save_leaderboard():
|
| 74 |
-
try:
|
| 75 |
-
with open(HUB_JSON, "w", encoding="utf-8") as f:
|
| 76 |
-
json.dump(leaderboard_scores, f, ensure_ascii=False)
|
| 77 |
-
|
| 78 |
-
if HF_TOKEN is None:
|
| 79 |
-
print("HF_TOKEN not set. Skipping push to hub.")
|
| 80 |
-
return
|
| 81 |
-
|
| 82 |
-
api = HfApi()
|
| 83 |
-
api.upload_file(
|
| 84 |
-
path_or_fileobj=HUB_JSON,
|
| 85 |
-
path_in_repo=HUB_JSON,
|
| 86 |
-
repo_id=HUB_REPO_ID,
|
| 87 |
-
repo_type="dataset",
|
| 88 |
-
token=HF_TOKEN,
|
| 89 |
-
commit_message="Update leaderboard"
|
| 90 |
-
)
|
| 91 |
-
except Exception as e:
|
| 92 |
-
print(f"Failed to save leaderboard to HF Hub: {e}")
|
| 93 |
-
|
| 94 |
-
# --- Load ONNX models ---
|
| 95 |
-
session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"])
|
| 96 |
-
input_name = session.get_inputs()[0].name
|
| 97 |
-
|
| 98 |
-
clip_image_sess = ort.InferenceSession(CLIP_IMAGE_ENCODER_PATH, providers=["CPUExecutionProvider"])
|
| 99 |
-
clip_text_sess = ort.InferenceSession(CLIP_TEXT_ENCODER_PATH, providers=["CPUExecutionProvider"])
|
| 100 |
-
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 101 |
-
|
| 102 |
-
transform = transforms.Compose([
|
| 103 |
-
transforms.Resize((224, 224)),
|
| 104 |
-
transforms.ToTensor(),
|
| 105 |
-
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
|
| 106 |
-
])
|
| 107 |
-
|
| 108 |
-
def compute_prompt_match(image: Image.Image, prompt: str) -> float:
|
| 109 |
-
try:
|
| 110 |
-
img_tensor = transform(image).unsqueeze(0).numpy().astype(np.float32)
|
| 111 |
-
image_features = clip_image_sess.run(None, {clip_image_sess.get_inputs()[0].name: img_tensor})[0][0]
|
| 112 |
-
image_features /= np.linalg.norm(image_features)
|
| 113 |
-
|
| 114 |
-
inputs = clip_tokenizer(prompt, return_tensors="np", padding="max_length", truncation=True, max_length=77)
|
| 115 |
-
input_ids = inputs["input_ids"]
|
| 116 |
-
attention_mask = inputs["attention_mask"]
|
| 117 |
-
text_features = clip_text_sess.run(None, {
|
| 118 |
-
clip_text_sess.get_inputs()[0].name: input_ids,
|
| 119 |
-
clip_text_sess.get_inputs()[1].name: attention_mask
|
| 120 |
-
})[0][0]
|
| 121 |
-
text_features /= np.linalg.norm(text_features)
|
| 122 |
-
|
| 123 |
-
sim = np.dot(image_features, text_features)
|
| 124 |
-
return round(sim * 100, 2)
|
| 125 |
-
except Exception as e:
|
| 126 |
-
print(f"CLIP ONNX match failed: {e}")
|
| 127 |
-
return 0.0
|
| 128 |
-
|
| 129 |
-
# --- Main prediction logic ---
|
| 130 |
-
def detect_with_model(image: Image.Image, prompt: str, username: str):
|
| 131 |
-
if not username.strip():
|
| 132 |
-
return "Please enter your name.", None, [], gr.update(visible=True), gr.update(visible=False), username
|
| 133 |
-
|
| 134 |
-
prompt_score = compute_prompt_match(image, prompt)
|
| 135 |
-
if prompt_score < PROMPT_MATCH_THRESHOLD:
|
| 136 |
-
message = f"⚠️ Prompt match too low ({round(prompt_score, 2)}%). Please generate an image that better matches the prompt."
|
| 137 |
-
return message, None, [], gr.update(visible=True), gr.update(visible=False), username
|
| 138 |
-
|
| 139 |
-
image_tensor = transforms.Resize((224, 224))(image)
|
| 140 |
-
image_tensor = transforms.ToTensor()(image_tensor).unsqueeze(0).numpy().astype(np.float32)
|
| 141 |
-
outputs = session.run(None, {input_name: image_tensor})
|
| 142 |
-
prob = round(1 / (1 + np.exp(-outputs[0][0][0])), 2)
|
| 143 |
-
prediction = "Real" if prob > 0.5 else "Fake"
|
| 144 |
-
|
| 145 |
-
score = 1 if prediction == "Real" else 0
|
| 146 |
-
confidence = round(prob * 100, 2) if prediction == "Real" else round((1 - prob) * 100, 2)
|
| 147 |
-
|
| 148 |
-
message = f"🔍 Prediction: {prediction} ({round(confidence, 2)}% confidence)\n🧐 Prompt match: {prompt_score}%"
|
| 149 |
-
|
| 150 |
-
if prediction == "Real":
|
| 151 |
-
leaderboard_scores[username] = leaderboard_scores.get(username, 0) + score
|
| 152 |
-
message += "\n🎉 Nice! You fooled the AI. +1 point!"
|
| 153 |
-
else:
|
| 154 |
-
message += "\n😅 The AI caught you this time. Try again!"
|
| 155 |
-
|
| 156 |
-
save_leaderboard()
|
| 157 |
-
|
| 158 |
-
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
|
| 159 |
-
leaderboard_table = [[name, points] for name, points in sorted_scores]
|
| 160 |
-
|
| 161 |
-
return (
|
| 162 |
-
message,
|
| 163 |
-
image,
|
| 164 |
-
leaderboard_table,
|
| 165 |
-
gr.update(visible=False),
|
| 166 |
-
gr.update(visible=True),
|
| 167 |
-
username
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
# --- UI Layout ---
|
| 171 |
-
def get_random_prompt():
|
| 172 |
-
return random.choice(PROMPT_LIST) if PROMPT_LIST else "A synthetic scene with dramatic lighting"
|
| 173 |
-
|
| 174 |
-
with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo:
|
| 175 |
-
gr.Markdown("## 🌝 OpenFake Arena")
|
| 176 |
-
gr.Markdown("Welcome to the OpenFake Arena!\n\n**Your mission:** Generate a synthetic image for the prompt, upload it, and try to fool the AI detector into thinking it’s real.\n\n**Rules:**\n- Only synthetic images allowed!\n- No cheating with real photos.\n\nMake it wild. Make it weird. Most of all — make it fun.")
|
| 177 |
-
|
| 178 |
-
with gr.Group(visible=True) as input_section:
|
| 179 |
-
username_input = gr.Textbox(label="Your Name", placeholder="Enter your name", interactive=True)
|
| 180 |
-
model_input = gr.Textbox(label="Model Used", placeholder="Name of the model used to generate the image", interactive=True)
|
| 181 |
-
|
| 182 |
-
with gr.Row():
|
| 183 |
-
prompt_input = gr.Textbox(
|
| 184 |
-
label="Prompt to use",
|
| 185 |
-
placeholder="e.g., ...",
|
| 186 |
-
value="",
|
| 187 |
-
lines=2
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
with gr.Row():
|
| 191 |
-
image_input = gr.Image(type="pil", label="Upload Synthetic Image")
|
| 192 |
-
|
| 193 |
-
with gr.Row():
|
| 194 |
-
submit_btn = gr.Button("Upload")
|
| 195 |
-
|
| 196 |
-
try_again_btn = gr.Button("Try Again", visible=False)
|
| 197 |
-
|
| 198 |
-
with gr.Group():
|
| 199 |
-
gr.Markdown("### 🎯 Result")
|
| 200 |
-
with gr.Row():
|
| 201 |
-
prediction_output = gr.Textbox(label="Prediction", interactive=False)
|
| 202 |
-
image_output = gr.Image(label="Submitted Image", show_label=False)
|
| 203 |
-
|
| 204 |
-
with gr.Group():
|
| 205 |
-
gr.Markdown("### 🏆 Leaderboard")
|
| 206 |
-
leaderboard = gr.Dataframe(
|
| 207 |
-
headers=["Username", "Score"],
|
| 208 |
-
datatype=["str", "number"],
|
| 209 |
-
interactive=False,
|
| 210 |
-
row_count=5,
|
| 211 |
-
visible=True
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
submit_btn.click(
|
| 215 |
-
fn=detect_with_model,
|
| 216 |
-
inputs=[image_input, prompt_input, username_input],
|
| 217 |
-
outputs=[
|
| 218 |
-
prediction_output,
|
| 219 |
-
image_output,
|
| 220 |
-
leaderboard,
|
| 221 |
-
input_section,
|
| 222 |
-
try_again_btn,
|
| 223 |
-
username_input
|
| 224 |
-
]
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
try_again_btn.click(
|
| 228 |
-
fn=lambda name: ("", None, [], gr.update(visible=True), gr.update(visible=False), name, gr.update(value=get_random_prompt())),
|
| 229 |
-
inputs=[username_input],
|
| 230 |
-
outputs=[
|
| 231 |
-
prediction_output,
|
| 232 |
-
image_output,
|
| 233 |
-
leaderboard,
|
| 234 |
-
input_section,
|
| 235 |
-
try_again_btn,
|
| 236 |
-
username_input,
|
| 237 |
-
prompt_input
|
| 238 |
-
]
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
demo.load(
|
| 242 |
-
fn=load_initial_state,
|
| 243 |
-
outputs=[prompt_input, leaderboard]
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
if __name__ == "__main__":
|
| 247 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|