Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,63 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
)
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
for val in history:
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
messages,
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
|
| 5 |
+
# Set the device
|
| 6 |
+
device = "cpu" # replace with your device: "cpu", "cuda", "mps"
|
| 7 |
+
|
| 8 |
+
# Initialize model and tokenizer
|
| 9 |
+
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
| 10 |
+
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
| 12 |
+
model.load_adapter(peft_model_id)
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 14 |
+
"CMLM/ZhongJing-2-1_8b",
|
| 15 |
+
padding_side="right",
|
| 16 |
+
trust_remote_code=True,
|
| 17 |
+
pad_token=''
|
| 18 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
def get_model_response(question):
|
| 21 |
+
# Create the prompt without context
|
| 22 |
+
prompt = f"Question: {question}"
|
| 23 |
+
messages = [
|
| 24 |
+
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
| 25 |
+
{"role": "user", "content": prompt}
|
| 26 |
+
]
|
| 27 |
|
| 28 |
+
# Prepare the input
|
| 29 |
+
text = tokenizer.apply_chat_template(
|
| 30 |
messages,
|
| 31 |
+
tokenize=False,
|
| 32 |
+
add_generation_prompt=True
|
| 33 |
+
)
|
| 34 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
| 35 |
+
|
| 36 |
+
# Generate the response
|
| 37 |
+
generated_ids = model.generate(
|
| 38 |
+
model_inputs.input_ids,
|
| 39 |
+
max_new_tokens=512
|
| 40 |
+
)
|
| 41 |
+
generated_ids = [
|
| 42 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
# Decode the response
|
| 46 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 47 |
+
return response
|
| 48 |
+
|
| 49 |
+
# Define a Gradio interface without the context parameter
|
| 50 |
+
def chat_interface(question):
|
| 51 |
+
response = get_model_response(question)
|
| 52 |
+
return response
|
| 53 |
+
|
| 54 |
+
iface = gr.Interface(
|
| 55 |
+
fn=chat_interface,
|
| 56 |
+
inputs=["text"],
|
| 57 |
+
outputs="text",
|
| 58 |
+
title="仲景GPT-V2-1.8B",
|
| 59 |
+
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
| 60 |
)
|
| 61 |
|
| 62 |
+
# Launch the interface with sharing enabled
|
| 63 |
+
iface.launch(share=True)
|
|
|