Spaces:
Sleeping
Sleeping
small bug fix
Browse files
app.py
CHANGED
|
@@ -22,7 +22,7 @@ config = {
|
|
| 22 |
},
|
| 23 |
}
|
| 24 |
|
| 25 |
-
|
| 26 |
(0, 255, 255),
|
| 27 |
(255, 255, 0),
|
| 28 |
(255, 0, 255),
|
|
@@ -33,16 +33,6 @@ class_rgb_colors = [
|
|
| 33 |
]
|
| 34 |
|
| 35 |
|
| 36 |
-
def label_to_onehot(mask: torch.Tensor, num_classes: int) -> torch.Tensor:
|
| 37 |
-
"""Transforms a tensor from label encoding to one hot encoding in boolean dtype"""
|
| 38 |
-
|
| 39 |
-
dims_p = (2, 0, 1) if mask.ndim == 2 else (0, 3, 1, 2)
|
| 40 |
-
return torch.permute(
|
| 41 |
-
F.one_hot(mask.type(torch.long), num_classes=num_classes).type(torch.bool),
|
| 42 |
-
dims_p,
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
cp_path = "CP_epoch20.pth"
|
| 47 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
|
|
@@ -63,13 +53,21 @@ transform = transforms.Compose(
|
|
| 63 |
)
|
| 64 |
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def get_overlay(image: torch.Tensor, preds: torch.Tensor, alpha: float) -> torch.Tensor:
|
| 67 |
"""Generates the segmentation ovelay for an satellite image"""
|
| 68 |
|
| 69 |
masks = label_to_onehot(preds.squeeze(), 7)
|
| 70 |
-
overlay = draw_segmentation_masks(
|
| 71 |
-
image, masks=masks, alpha=alpha, colors=class_rgb_colors
|
| 72 |
-
)
|
| 73 |
return overlay
|
| 74 |
|
| 75 |
|
|
@@ -77,11 +75,14 @@ def hwc_to_chw(image_tensor: torch.Tensor) -> torch.Tensor:
|
|
| 77 |
return torch.permute(image_tensor, (2, 0, 1))
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
def segment(satellite_image: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
| 81 |
image_tensor = torch.from_numpy(satellite_image)
|
| 82 |
image_tensor = hwc_to_chw(image_tensor)
|
| 83 |
pil_image = transforms.functional.to_pil_image(image_tensor)
|
| 84 |
-
|
| 85 |
# preprocess image
|
| 86 |
X = transform(pil_image).unsqueeze(0)
|
| 87 |
X = X.to(device)
|
|
@@ -92,8 +93,8 @@ def segment(satellite_image: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
|
| 92 |
# resize to evaluate with the original image
|
| 93 |
preds = transforms.functional.resize(preds, X.shape[-2:], antialias=True)
|
| 94 |
# get rbg formatted images
|
| 95 |
-
segmentation_overlay =
|
| 96 |
-
raw_segmentation =
|
| 97 |
get_overlay(torch.zeros_like(image_tensor), preds, 1)
|
| 98 |
).numpy()
|
| 99 |
|
|
@@ -108,6 +109,12 @@ title = "Satellite Images Landcover Segmentation"
|
|
| 108 |
description = "Upload an image or select from examples to segment"
|
| 109 |
|
| 110 |
iface = gr.Interface(
|
| 111 |
-
segment,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
)
|
| 113 |
iface.launch()
|
|
|
|
| 22 |
},
|
| 23 |
}
|
| 24 |
|
| 25 |
+
colors = [
|
| 26 |
(0, 255, 255),
|
| 27 |
(255, 255, 0),
|
| 28 |
(255, 0, 255),
|
|
|
|
| 33 |
]
|
| 34 |
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
cp_path = "CP_epoch20.pth"
|
| 37 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
|
| 56 |
+
def label_to_onehot(mask: torch.Tensor, num_classes: int) -> torch.Tensor:
|
| 57 |
+
"""Transforms a tensor from label encoding to one hot encoding in boolean dtype"""
|
| 58 |
+
|
| 59 |
+
dims_p = (2, 0, 1) if mask.ndim == 2 else (0, 3, 1, 2)
|
| 60 |
+
return torch.permute(
|
| 61 |
+
F.one_hot(mask.type(torch.long), num_classes=num_classes).type(torch.bool),
|
| 62 |
+
dims_p,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
def get_overlay(image: torch.Tensor, preds: torch.Tensor, alpha: float) -> torch.Tensor:
|
| 67 |
"""Generates the segmentation ovelay for an satellite image"""
|
| 68 |
|
| 69 |
masks = label_to_onehot(preds.squeeze(), 7)
|
| 70 |
+
overlay = draw_segmentation_masks(image, masks=masks, alpha=alpha, colors=colors)
|
|
|
|
|
|
|
| 71 |
return overlay
|
| 72 |
|
| 73 |
|
|
|
|
| 75 |
return torch.permute(image_tensor, (2, 0, 1))
|
| 76 |
|
| 77 |
|
| 78 |
+
def chw_to_hwc(image_tensor: torch.Tensor) -> torch.Tensor:
|
| 79 |
+
return torch.permute(image_tensor, (1, 2, 0))
|
| 80 |
+
|
| 81 |
+
|
| 82 |
def segment(satellite_image: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
| 83 |
image_tensor = torch.from_numpy(satellite_image)
|
| 84 |
image_tensor = hwc_to_chw(image_tensor)
|
| 85 |
pil_image = transforms.functional.to_pil_image(image_tensor)
|
|
|
|
| 86 |
# preprocess image
|
| 87 |
X = transform(pil_image).unsqueeze(0)
|
| 88 |
X = X.to(device)
|
|
|
|
| 93 |
# resize to evaluate with the original image
|
| 94 |
preds = transforms.functional.resize(preds, X.shape[-2:], antialias=True)
|
| 95 |
# get rbg formatted images
|
| 96 |
+
segmentation_overlay = chw_to_hwc(get_overlay(image_tensor, preds, 0.2)).numpy()
|
| 97 |
+
raw_segmentation = chw_to_hwc(
|
| 98 |
get_overlay(torch.zeros_like(image_tensor), preds, 1)
|
| 99 |
).numpy()
|
| 100 |
|
|
|
|
| 109 |
description = "Upload an image or select from examples to segment"
|
| 110 |
|
| 111 |
iface = gr.Interface(
|
| 112 |
+
segment,
|
| 113 |
+
i,
|
| 114 |
+
o,
|
| 115 |
+
examples=examples,
|
| 116 |
+
title=title,
|
| 117 |
+
description=description,
|
| 118 |
+
cache_examples=True,
|
| 119 |
)
|
| 120 |
iface.launch()
|