Spaces:
Paused
Paused
| import re | |
| import json | |
| import numpy as np | |
| import faiss | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from transformers import ( | |
| pipeline, | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| AutoModelForSeq2SeqLM, | |
| AutoModelForCausalLM, | |
| T5Tokenizer, | |
| T5ForConditionalGeneration, | |
| ) | |
| from sentence_transformers import SentenceTransformer | |
| from bertopic import BERTopic | |
| from datasets import Features, Value | |
| from googleapiclient.discovery import build | |
| from youtube_transcript_api import YouTubeTranscriptApi | |
| # Initialize FastAPI app | |
| app = FastAPI() | |
| # YouTube Data API setup | |
| API_KEY = "AIzaSyDBdxA6KdOwtaaTgt26EBYRyvknOObmgAc" | |
| YOUTUBE_API_SERVICE_NAME = "youtube" | |
| YOUTUBE_API_VERSION = "v3" | |
| youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=API_KEY) | |
| # Preprocessing function | |
| def preprocess_text(text): | |
| """ | |
| Cleans and tokenizes text. | |
| """ | |
| text = re.sub(r"http\S+|www\S+|https\S+", "", text, flags=re.MULTILINE) # Remove URLs | |
| text = re.sub(r"\s+", " ", text).strip() # Remove extra spaces | |
| text = re.sub(r"[^\w\s]", "", text) # Remove punctuation | |
| return text.lower() | |
| # Content Classification Model | |
| class ContentClassifier: | |
| def __init__(self, model_name="bert-base-uncased"): | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| self.model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| self.pipeline = pipeline("text-classification", model=self.model, tokenizer=self.tokenizer) | |
| def classify(self, text): | |
| """ | |
| Classifies text into predefined categories. | |
| """ | |
| result = self.pipeline(text) | |
| return result | |
| # Relevance Detection Model | |
| class RelevanceDetector: | |
| def __init__(self, model_name="bert-base-uncased"): | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| self.model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| self.pipeline = pipeline("text-classification", model=self.model, tokenizer=self.tokenizer) | |
| def detect_relevance(self, text, threshold=0.5): | |
| """ | |
| Detects whether a text is relevant to a specific domain. | |
| """ | |
| result = self.pipeline(text) | |
| return result[0]["label"] == "RELEVANT" and result[0]["score"] > threshold | |
| # Topic Extraction Model using BERTopic | |
| class TopicExtractor: | |
| def __init__(self): | |
| self.model = BERTopic() | |
| def extract_topics(self, documents): | |
| """ | |
| Extracts topics from a list of documents. | |
| """ | |
| topics, probs = self.model.fit_transform(documents) | |
| return self.model.get_topic_info() | |
| # Summarization Model | |
| class Summarizer: | |
| def __init__(self, model_name="t5-small"): | |
| self.tokenizer = T5Tokenizer.from_pretrained(model_name) | |
| self.model = T5ForConditionalGeneration.from_pretrained(model_name) | |
| def summarize(self, text, max_length=100): | |
| """ | |
| Summarizes a given text. | |
| """ | |
| inputs = self.tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True) | |
| summary_ids = self.model.generate(inputs, max_length=max_length, min_length=25, length_penalty=2.0, num_beams=4) | |
| summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| return summary | |
| # Search and Recommendation Model using FAISS | |
| class SearchEngine: | |
| def __init__(self, embedding_model="sentence-transformers/all-MiniLM-L6-v2"): | |
| self.model = SentenceTransformer(embedding_model) | |
| self.index = None | |
| self.documents = [] | |
| def build_index(self, docs): | |
| """ | |
| Builds a FAISS index for document retrieval. | |
| """ | |
| self.documents = docs | |
| embeddings = self.model.encode(docs, convert_to_tensor=True, show_progress_bar=True) | |
| self.index = faiss.IndexFlatL2(embeddings.shape[1]) | |
| self.index.add(embeddings.cpu().detach().numpy()) | |
| def search(self, query, top_k=5): | |
| """ | |
| Searches the index for the top_k most relevant documents. | |
| """ | |
| query_embedding = self.model.encode(query, convert_to_tensor=True) | |
| distances, indices = self.index.search(query_embedding.cpu().detach().numpy().reshape(1, -1), top_k) | |
| return [(self.documents[i], distances[0][i]) for i in indices[0]] | |
| # Conversational Model using GPT-2 | |
| class Chatbot: | |
| def __init__(self, model_name="gpt2"): | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| self.model = AutoModelForCausalLM.from_pretrained(model_name) | |
| def generate_response(self, prompt, max_length=50): | |
| """ | |
| Generates a response to a user query using GPT-2. | |
| """ | |
| inputs = self.tokenizer.encode(prompt, return_tensors="pt") | |
| outputs = self.model.generate(inputs, max_length=max_length, num_return_sequences=1) | |
| response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Initialize models | |
| classifier = ContentClassifier() | |
| relevance_detector = RelevanceDetector() | |
| summarizer = Summarizer() | |
| search_engine = SearchEngine() | |
| topic_extractor = TopicExtractor() | |
| chatbot = Chatbot() | |
| # Fetch video metadata using YouTube Data API | |
| def fetch_video_metadata(video_id): | |
| request = youtube.videos().list( | |
| part="snippet,statistics", | |
| id=video_id | |
| ) | |
| response = request.execute() | |
| return response["items"][0] if response["items"] else None | |
| # Fetch video transcript using youtube-transcript-api | |
| def fetch_video_transcript(video_id): | |
| try: | |
| transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
| return " ".join([entry["text"] for entry in transcript]) | |
| except Exception as e: | |
| print(f"Error fetching transcript: {e}") | |
| return None | |
| # Fetch and preprocess video data | |
| def fetch_and_preprocess_video_data(video_id): | |
| metadata = fetch_video_metadata(video_id) | |
| if not metadata: | |
| return None | |
| transcript = fetch_video_transcript(video_id) | |
| # Preprocess the data | |
| video_data = { | |
| "video_id": video_id, | |
| "video_link": f"https://www.youtube.com/watch?v={video_id}", | |
| "title": metadata["snippet"]["title"], | |
| "text": transcript if transcript else metadata["snippet"]["description"], | |
| "channel": metadata["snippet"]["channelTitle"], | |
| "channel_id": metadata["snippet"]["channelId"], | |
| "date": metadata["snippet"]["publishedAt"], | |
| "license": "Unknown", | |
| "original_language": "Unknown", | |
| "source_language": "Unknown", | |
| "transcription_language": "Unknown", | |
| "word_count": len(metadata["snippet"]["description"].split()), | |
| "character_count": len(metadata["snippet"]["description"]), | |
| } | |
| return video_data | |
| # Pydantic models for request validation | |
| class VideoRequest(BaseModel): | |
| video_id: str | |
| class TextRequest(BaseModel): | |
| text: str | |
| class QueryRequest(BaseModel): | |
| query: str | |
| class PromptRequest(BaseModel): | |
| prompt: str | |
| # API Endpoints | |
| async def classify(request: VideoRequest): | |
| video_id = request.video_id | |
| video_data = fetch_and_preprocess_video_data(video_id) | |
| if not video_data: | |
| raise HTTPException(status_code=400, detail="Failed to fetch video data") | |
| result = classifier.classify(video_data["text"]) | |
| return {"result": result} | |
| async def relevance(request: VideoRequest): | |
| video_id = request.video_id | |
| video_data = fetch_and_preprocess_video_data(video_id) | |
| if not video_data: | |
| raise HTTPException(status_code=400, detail="Failed to fetch video data") | |
| relevant = relevance_detector.detect_relevance(video_data["text"]) | |
| return {"relevant": relevant} | |
| async def summarize(request: VideoRequest): | |
| video_id = request.video_id | |
| video_data = fetch_and_preprocess_video_data(video_id) | |
| if not video_data: | |
| raise HTTPException(status_code=400, detail="Failed to fetch video data") | |
| summary = summarizer.summarize(video_data["text"]) | |
| return {"summary": summary} | |
| async def search(request: QueryRequest): | |
| query = request.query | |
| if not query: | |
| raise HTTPException(status_code=400, detail="No query provided") | |
| results = search_engine.search(query) | |
| return {"results": results} | |
| async def topics(request: TextRequest): | |
| text = request.text | |
| if not text: | |
| raise HTTPException(status_code=400, detail="No text provided") | |
| result = topic_extractor.extract_topics([text]) | |
| return {"topics": result.to_dict()} | |
| async def chat(request: PromptRequest): | |
| prompt = request.prompt | |
| if not prompt: | |
| raise HTTPException(status_code=400, detail="No prompt provided") | |
| response = chatbot.generate_response(prompt) | |
| return {"response": response} | |
| # Start the FastAPI app | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) |