Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,8 @@ import re
|
|
| 2 |
import json
|
| 3 |
import numpy as np
|
| 4 |
import faiss
|
| 5 |
-
from
|
|
|
|
| 6 |
from transformers import (
|
| 7 |
pipeline,
|
| 8 |
AutoModelForSequenceClassification,
|
|
@@ -14,8 +15,18 @@ from transformers import (
|
|
| 14 |
)
|
| 15 |
from sentence_transformers import SentenceTransformer
|
| 16 |
from bertopic import BERTopic
|
| 17 |
-
from datasets import
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Preprocessing function
|
| 21 |
def preprocess_text(text):
|
|
@@ -128,9 +139,6 @@ class Chatbot:
|
|
| 128 |
return response
|
| 129 |
|
| 130 |
|
| 131 |
-
# Flask API for Chatbot Integration
|
| 132 |
-
app = Flask(__name__)
|
| 133 |
-
|
| 134 |
# Initialize models
|
| 135 |
classifier = ContentClassifier()
|
| 136 |
relevance_detector = RelevanceDetector()
|
|
@@ -139,93 +147,135 @@ search_engine = SearchEngine()
|
|
| 139 |
topic_extractor = TopicExtractor()
|
| 140 |
chatbot = Chatbot()
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
"video_id": Value("string"),
|
| 148 |
-
"video_link": Value("string"),
|
| 149 |
-
"title": Value("string"),
|
| 150 |
-
"text": Value("string"),
|
| 151 |
-
"channel": Value("string"),
|
| 152 |
-
"channel_id": Value("string"),
|
| 153 |
-
"date": Value("string"),
|
| 154 |
-
"license": Value("string"),
|
| 155 |
-
"original_language": Value("string"),
|
| 156 |
-
"source_language": Value("string"),
|
| 157 |
-
"transcription_language": Value("string"),
|
| 158 |
-
"word_count": Value("int64"),
|
| 159 |
-
"character_count": Value("int64"),
|
| 160 |
-
})
|
| 161 |
-
|
| 162 |
-
# Load the dataset from Hugging Face Hub
|
| 163 |
-
try:
|
| 164 |
-
dataset = load_dataset(
|
| 165 |
-
"PleIAs/YouTube-Commons",
|
| 166 |
-
features=features,
|
| 167 |
-
streaming=True,
|
| 168 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
# Process the dataset
|
| 171 |
-
for example in dataset["train"]:
|
| 172 |
-
print(example) # Process each example
|
| 173 |
-
break # Stop after the first example for demonstration
|
| 174 |
-
except Exception as e:
|
| 175 |
-
print(f"Error loading dataset: {e}")
|
| 176 |
|
| 177 |
# API Endpoints
|
| 178 |
-
@app.
|
| 179 |
-
def classify():
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
return jsonify(result)
|
| 185 |
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
@app.route("/relevance", methods=["POST"])
|
| 188 |
-
def relevance():
|
| 189 |
-
text = request.json.get("text", "")
|
| 190 |
-
if not text:
|
| 191 |
-
return jsonify({"error": "No text provided"}), 400
|
| 192 |
-
relevant = relevance_detector.detect_relevance(text)
|
| 193 |
-
return jsonify({"relevant": relevant})
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
@app.route("/summarize", methods=["POST"])
|
| 197 |
-
def summarize():
|
| 198 |
-
text = request.json.get("text", "")
|
| 199 |
-
if not text:
|
| 200 |
-
return jsonify({"error": "No text provided"}), 400
|
| 201 |
-
summary = summarizer.summarize(text)
|
| 202 |
-
return jsonify({"summary": summary})
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
if not query:
|
| 209 |
-
|
|
|
|
| 210 |
results = search_engine.search(query)
|
| 211 |
-
return
|
| 212 |
|
| 213 |
|
| 214 |
-
@app.
|
| 215 |
-
def topics():
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
|
| 220 |
-
@app.
|
| 221 |
-
def chat():
|
| 222 |
-
prompt = request.
|
| 223 |
if not prompt:
|
| 224 |
-
|
|
|
|
| 225 |
response = chatbot.generate_response(prompt)
|
| 226 |
-
return
|
| 227 |
|
| 228 |
|
| 229 |
-
# Start the
|
| 230 |
if __name__ == "__main__":
|
| 231 |
-
|
|
|
|
|
|
| 2 |
import json
|
| 3 |
import numpy as np
|
| 4 |
import faiss
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
from transformers import (
|
| 8 |
pipeline,
|
| 9 |
AutoModelForSequenceClassification,
|
|
|
|
| 15 |
)
|
| 16 |
from sentence_transformers import SentenceTransformer
|
| 17 |
from bertopic import BERTopic
|
| 18 |
+
from datasets import Features, Value
|
| 19 |
+
from googleapiclient.discovery import build
|
| 20 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
| 21 |
+
|
| 22 |
+
# Initialize FastAPI app
|
| 23 |
+
app = FastAPI()
|
| 24 |
+
|
| 25 |
+
# YouTube Data API setup
|
| 26 |
+
API_KEY = "your_youtube_api_key"
|
| 27 |
+
YOUTUBE_API_SERVICE_NAME = "youtube"
|
| 28 |
+
YOUTUBE_API_VERSION = "v3"
|
| 29 |
+
youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=API_KEY)
|
| 30 |
|
| 31 |
# Preprocessing function
|
| 32 |
def preprocess_text(text):
|
|
|
|
| 139 |
return response
|
| 140 |
|
| 141 |
|
|
|
|
|
|
|
|
|
|
| 142 |
# Initialize models
|
| 143 |
classifier = ContentClassifier()
|
| 144 |
relevance_detector = RelevanceDetector()
|
|
|
|
| 147 |
topic_extractor = TopicExtractor()
|
| 148 |
chatbot = Chatbot()
|
| 149 |
|
| 150 |
+
# Fetch video metadata using YouTube Data API
|
| 151 |
+
def fetch_video_metadata(video_id):
|
| 152 |
+
request = youtube.videos().list(
|
| 153 |
+
part="snippet,statistics",
|
| 154 |
+
id=video_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
+
response = request.execute()
|
| 157 |
+
return response["items"][0] if response["items"] else None
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# Fetch video transcript using youtube-transcript-api
|
| 161 |
+
def fetch_video_transcript(video_id):
|
| 162 |
+
try:
|
| 163 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
| 164 |
+
return " ".join([entry["text"] for entry in transcript])
|
| 165 |
+
except Exception as e:
|
| 166 |
+
print(f"Error fetching transcript: {e}")
|
| 167 |
+
return None
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
# Fetch and preprocess video data
|
| 171 |
+
def fetch_and_preprocess_video_data(video_id):
|
| 172 |
+
metadata = fetch_video_metadata(video_id)
|
| 173 |
+
if not metadata:
|
| 174 |
+
return None
|
| 175 |
+
|
| 176 |
+
transcript = fetch_video_transcript(video_id)
|
| 177 |
+
|
| 178 |
+
# Preprocess the data
|
| 179 |
+
video_data = {
|
| 180 |
+
"video_id": video_id,
|
| 181 |
+
"video_link": f"https://www.youtube.com/watch?v={video_id}",
|
| 182 |
+
"title": metadata["snippet"]["title"],
|
| 183 |
+
"text": transcript if transcript else metadata["snippet"]["description"],
|
| 184 |
+
"channel": metadata["snippet"]["channelTitle"],
|
| 185 |
+
"channel_id": metadata["snippet"]["channelId"],
|
| 186 |
+
"date": metadata["snippet"]["publishedAt"],
|
| 187 |
+
"license": "Unknown",
|
| 188 |
+
"original_language": "Unknown",
|
| 189 |
+
"source_language": "Unknown",
|
| 190 |
+
"transcription_language": "Unknown",
|
| 191 |
+
"word_count": len(metadata["snippet"]["description"].split()),
|
| 192 |
+
"character_count": len(metadata["snippet"]["description"]),
|
| 193 |
+
}
|
| 194 |
+
return video_data
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# Pydantic models for request validation
|
| 198 |
+
class VideoRequest(BaseModel):
|
| 199 |
+
video_id: str
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class TextRequest(BaseModel):
|
| 203 |
+
text: str
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class QueryRequest(BaseModel):
|
| 207 |
+
query: str
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class PromptRequest(BaseModel):
|
| 211 |
+
prompt: str
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
# API Endpoints
|
| 215 |
+
@app.post("/classify")
|
| 216 |
+
async def classify(request: VideoRequest):
|
| 217 |
+
video_id = request.video_id
|
| 218 |
+
video_data = fetch_and_preprocess_video_data(video_id)
|
| 219 |
+
if not video_data:
|
| 220 |
+
raise HTTPException(status_code=400, detail="Failed to fetch video data")
|
|
|
|
| 221 |
|
| 222 |
+
result = classifier.classify(video_data["text"])
|
| 223 |
+
return {"result": result}
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
+
@app.post("/relevance")
|
| 227 |
+
async def relevance(request: VideoRequest):
|
| 228 |
+
video_id = request.video_id
|
| 229 |
+
video_data = fetch_and_preprocess_video_data(video_id)
|
| 230 |
+
if not video_data:
|
| 231 |
+
raise HTTPException(status_code=400, detail="Failed to fetch video data")
|
| 232 |
+
|
| 233 |
+
relevant = relevance_detector.detect_relevance(video_data["text"])
|
| 234 |
+
return {"relevant": relevant}
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
@app.post("/summarize")
|
| 238 |
+
async def summarize(request: VideoRequest):
|
| 239 |
+
video_id = request.video_id
|
| 240 |
+
video_data = fetch_and_preprocess_video_data(video_id)
|
| 241 |
+
if not video_data:
|
| 242 |
+
raise HTTPException(status_code=400, detail="Failed to fetch video data")
|
| 243 |
|
| 244 |
+
summary = summarizer.summarize(video_data["text"])
|
| 245 |
+
return {"summary": summary}
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
@app.post("/search")
|
| 249 |
+
async def search(request: QueryRequest):
|
| 250 |
+
query = request.query
|
| 251 |
if not query:
|
| 252 |
+
raise HTTPException(status_code=400, detail="No query provided")
|
| 253 |
+
|
| 254 |
results = search_engine.search(query)
|
| 255 |
+
return {"results": results}
|
| 256 |
|
| 257 |
|
| 258 |
+
@app.post("/topics")
|
| 259 |
+
async def topics(request: TextRequest):
|
| 260 |
+
text = request.text
|
| 261 |
+
if not text:
|
| 262 |
+
raise HTTPException(status_code=400, detail="No text provided")
|
| 263 |
+
|
| 264 |
+
result = topic_extractor.extract_topics([text])
|
| 265 |
+
return {"topics": result.to_dict()}
|
| 266 |
|
| 267 |
|
| 268 |
+
@app.post("/chat")
|
| 269 |
+
async def chat(request: PromptRequest):
|
| 270 |
+
prompt = request.prompt
|
| 271 |
if not prompt:
|
| 272 |
+
raise HTTPException(status_code=400, detail="No prompt provided")
|
| 273 |
+
|
| 274 |
response = chatbot.generate_response(prompt)
|
| 275 |
+
return {"response": response}
|
| 276 |
|
| 277 |
|
| 278 |
+
# Start the FastAPI app
|
| 279 |
if __name__ == "__main__":
|
| 280 |
+
import uvicorn
|
| 281 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|