Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import gc
|
| 6 |
+
import os
|
| 7 |
+
import spaces
|
| 8 |
+
|
| 9 |
+
# Model configuration
|
| 10 |
+
MODEL_PATH = "nvidia/Llama-Nemotron-Nano-VL-8B-V1"
|
| 11 |
+
|
| 12 |
+
# Load model globally
|
| 13 |
+
print("Loading model...")
|
| 14 |
+
model = AutoModel.from_pretrained(
|
| 15 |
+
MODEL_PATH,
|
| 16 |
+
torch_dtype=torch.bfloat16,
|
| 17 |
+
low_cpu_mem_usage=True,
|
| 18 |
+
trust_remote_code=True,
|
| 19 |
+
).eval()
|
| 20 |
+
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
| 22 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
| 23 |
+
MODEL_PATH,
|
| 24 |
+
trust_remote_code=True
|
| 25 |
+
)
|
| 26 |
+
print("Model loaded successfully!")
|
| 27 |
+
|
| 28 |
+
def move_to_device(obj, device):
|
| 29 |
+
"""Recursively move tensors to device"""
|
| 30 |
+
if torch.is_tensor(obj):
|
| 31 |
+
return obj.to(device)
|
| 32 |
+
elif isinstance(obj, dict):
|
| 33 |
+
return {k: move_to_device(v, device) for k, v in obj.items()}
|
| 34 |
+
elif isinstance(obj, list):
|
| 35 |
+
return [move_to_device(v, device) for v in obj]
|
| 36 |
+
elif isinstance(obj, tuple):
|
| 37 |
+
return tuple(move_to_device(v, device) for v in obj)
|
| 38 |
+
elif hasattr(obj, 'to'):
|
| 39 |
+
return obj.to(device)
|
| 40 |
+
else:
|
| 41 |
+
return obj
|
| 42 |
+
|
| 43 |
+
@spaces.GPU(duration=60)
|
| 44 |
+
def chat_text_only(message):
|
| 45 |
+
try:
|
| 46 |
+
device = "cuda"
|
| 47 |
+
|
| 48 |
+
# Move entire model to GPU
|
| 49 |
+
model.to(device)
|
| 50 |
+
|
| 51 |
+
generation_config = dict(
|
| 52 |
+
max_new_tokens=512,
|
| 53 |
+
do_sample=True,
|
| 54 |
+
temperature=0.7,
|
| 55 |
+
eos_token_id=tokenizer.eos_token_id
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Tokenize on CPU then move to GPU
|
| 59 |
+
inputs = tokenizer(message, return_tensors="pt")
|
| 60 |
+
inputs = move_to_device(inputs, device)
|
| 61 |
+
|
| 62 |
+
# Generate
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
response, _ = model.chat(
|
| 65 |
+
tokenizer,
|
| 66 |
+
None,
|
| 67 |
+
message,
|
| 68 |
+
generation_config,
|
| 69 |
+
history=None,
|
| 70 |
+
return_history=True
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Move model back to CPU
|
| 74 |
+
model.to("cpu")
|
| 75 |
+
torch.cuda.empty_cache()
|
| 76 |
+
gc.collect()
|
| 77 |
+
|
| 78 |
+
return response
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
# Ensure model is back on CPU even if error occurs
|
| 82 |
+
model.to("cpu")
|
| 83 |
+
torch.cuda.empty_cache()
|
| 84 |
+
gc.collect()
|
| 85 |
+
return f"Error: {str(e)}"
|
| 86 |
+
|
| 87 |
+
@spaces.GPU(duration=60)
|
| 88 |
+
def chat_with_image(image, message):
|
| 89 |
+
if image is None:
|
| 90 |
+
return "Please upload an image."
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
device = "cuda"
|
| 94 |
+
|
| 95 |
+
# Move entire model to GPU
|
| 96 |
+
model.to(device)
|
| 97 |
+
|
| 98 |
+
generation_config = dict(
|
| 99 |
+
max_new_tokens=512,
|
| 100 |
+
do_sample=True,
|
| 101 |
+
temperature=0.7,
|
| 102 |
+
eos_token_id=tokenizer.eos_token_id
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Process image
|
| 106 |
+
image_features = image_processor(image)
|
| 107 |
+
|
| 108 |
+
# Move all image features to GPU
|
| 109 |
+
image_features = move_to_device(image_features, device)
|
| 110 |
+
|
| 111 |
+
# Add image token to message if not present
|
| 112 |
+
if "<image>" not in message:
|
| 113 |
+
message = f"<image>\n{message}"
|
| 114 |
+
|
| 115 |
+
# Generate
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
response = model.chat(
|
| 118 |
+
tokenizer=tokenizer,
|
| 119 |
+
question=message,
|
| 120 |
+
generation_config=generation_config,
|
| 121 |
+
**image_features
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Move model back to CPU
|
| 125 |
+
model.to("cpu")
|
| 126 |
+
torch.cuda.empty_cache()
|
| 127 |
+
gc.collect()
|
| 128 |
+
|
| 129 |
+
return response
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
# Ensure model is back on CPU even if error occurs
|
| 133 |
+
model.to("cpu")
|
| 134 |
+
torch.cuda.empty_cache()
|
| 135 |
+
gc.collect()
|
| 136 |
+
return f"Error: {str(e)}"
|
| 137 |
+
|
| 138 |
+
@spaces.GPU(duration=60)
|
| 139 |
+
def chat_with_two_images(image1, image2, message):
|
| 140 |
+
if image1 is None or image2 is None:
|
| 141 |
+
return "Please upload both images."
|
| 142 |
+
|
| 143 |
+
try:
|
| 144 |
+
device = "cuda"
|
| 145 |
+
|
| 146 |
+
# Move entire model to GPU
|
| 147 |
+
model.to(device)
|
| 148 |
+
|
| 149 |
+
generation_config = dict(
|
| 150 |
+
max_new_tokens=512,
|
| 151 |
+
do_sample=True,
|
| 152 |
+
temperature=0.7,
|
| 153 |
+
eos_token_id=tokenizer.eos_token_id
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Process both images
|
| 157 |
+
image_features = image_processor([image1, image2])
|
| 158 |
+
|
| 159 |
+
# Move all image features to GPU
|
| 160 |
+
image_features = move_to_device(image_features, device)
|
| 161 |
+
|
| 162 |
+
# Format message for two images
|
| 163 |
+
if "<image-1>" not in message and "<image-2>" not in message:
|
| 164 |
+
message = f"<image-1>: <image>\n<image-2>: <image>\n{message}"
|
| 165 |
+
|
| 166 |
+
# Generate
|
| 167 |
+
with torch.no_grad():
|
| 168 |
+
response = model.chat(
|
| 169 |
+
tokenizer=tokenizer,
|
| 170 |
+
question=message,
|
| 171 |
+
generation_config=generation_config,
|
| 172 |
+
**image_features
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
# Move model back to CPU
|
| 176 |
+
model.to("cpu")
|
| 177 |
+
torch.cuda.empty_cache()
|
| 178 |
+
gc.collect()
|
| 179 |
+
|
| 180 |
+
return response
|
| 181 |
+
|
| 182 |
+
except Exception as e:
|
| 183 |
+
# Ensure model is back on CPU even if error occurs
|
| 184 |
+
model.to("cpu")
|
| 185 |
+
torch.cuda.empty_cache()
|
| 186 |
+
gc.collect()
|
| 187 |
+
return f"Error: {str(e)}"
|
| 188 |
+
|
| 189 |
+
# Create Gradio interface
|
| 190 |
+
def create_interface():
|
| 191 |
+
with gr.Blocks(title="Llama Nemotron Nano VL 8B", theme=gr.themes.Soft()) as demo:
|
| 192 |
+
gr.Markdown("# 🦙 Llama Nemotron Nano VL 8B Vision-Language Model")
|
| 193 |
+
gr.Markdown("Chat with a powerful vision-language model that can understand both text and images!")
|
| 194 |
+
|
| 195 |
+
with gr.Tabs():
|
| 196 |
+
# Text-only chat tab
|
| 197 |
+
with gr.TabItem("💬 Text Chat"):
|
| 198 |
+
gr.Markdown("### Chat with the model using text only")
|
| 199 |
+
|
| 200 |
+
with gr.Row():
|
| 201 |
+
with gr.Column():
|
| 202 |
+
text_input = gr.Textbox(
|
| 203 |
+
label="Your message",
|
| 204 |
+
placeholder="Ask me anything...",
|
| 205 |
+
lines=3
|
| 206 |
+
)
|
| 207 |
+
text_submit = gr.Button("Send", variant="primary")
|
| 208 |
+
|
| 209 |
+
with gr.Column():
|
| 210 |
+
text_output = gr.Textbox(
|
| 211 |
+
label="Model Response",
|
| 212 |
+
lines=10,
|
| 213 |
+
max_lines=20
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
text_submit.click(
|
| 217 |
+
chat_text_only,
|
| 218 |
+
inputs=[text_input],
|
| 219 |
+
outputs=[text_output]
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Example questions
|
| 223 |
+
gr.Examples(
|
| 224 |
+
examples=[
|
| 225 |
+
["What is artificial intelligence?"],
|
| 226 |
+
["Explain quantum computing in simple terms."],
|
| 227 |
+
["What happened in 1969?"],
|
| 228 |
+
["Write a short story about a robot."]
|
| 229 |
+
],
|
| 230 |
+
inputs=[text_input]
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# Single image chat tab
|
| 234 |
+
with gr.TabItem("🖼️ Image + Text Chat"):
|
| 235 |
+
gr.Markdown("### Upload an image and ask questions about it")
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column():
|
| 239 |
+
image_input = gr.Image(
|
| 240 |
+
label="Upload Image",
|
| 241 |
+
type="pil"
|
| 242 |
+
)
|
| 243 |
+
image_text_input = gr.Textbox(
|
| 244 |
+
label="Your question about the image",
|
| 245 |
+
placeholder="What do you see in this image?",
|
| 246 |
+
lines=3
|
| 247 |
+
)
|
| 248 |
+
image_submit = gr.Button("Analyze", variant="primary")
|
| 249 |
+
|
| 250 |
+
with gr.Column():
|
| 251 |
+
image_output = gr.Textbox(
|
| 252 |
+
label="Model Response",
|
| 253 |
+
lines=10,
|
| 254 |
+
max_lines=20
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
image_submit.click(
|
| 258 |
+
chat_with_image,
|
| 259 |
+
inputs=[image_input, image_text_input],
|
| 260 |
+
outputs=[image_output]
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Example prompts
|
| 264 |
+
gr.Examples(
|
| 265 |
+
examples=[
|
| 266 |
+
["Describe what you see in this image."],
|
| 267 |
+
["What objects are in this image?"],
|
| 268 |
+
["Extract any text from this image."],
|
| 269 |
+
["What is the main subject of this image?"]
|
| 270 |
+
],
|
| 271 |
+
inputs=[image_text_input]
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Two images comparison tab
|
| 275 |
+
with gr.TabItem("🖼️🖼️ Compare Two Images"):
|
| 276 |
+
gr.Markdown("### Upload two images and ask the model to compare them")
|
| 277 |
+
|
| 278 |
+
with gr.Row():
|
| 279 |
+
with gr.Column():
|
| 280 |
+
image1_input = gr.Image(
|
| 281 |
+
label="First Image",
|
| 282 |
+
type="pil"
|
| 283 |
+
)
|
| 284 |
+
image2_input = gr.Image(
|
| 285 |
+
label="Second Image",
|
| 286 |
+
type="pil"
|
| 287 |
+
)
|
| 288 |
+
two_images_text_input = gr.Textbox(
|
| 289 |
+
label="Your question about both images",
|
| 290 |
+
placeholder="Compare these two images...",
|
| 291 |
+
lines=3
|
| 292 |
+
)
|
| 293 |
+
two_images_submit = gr.Button("Compare", variant="primary")
|
| 294 |
+
|
| 295 |
+
with gr.Column():
|
| 296 |
+
two_images_output = gr.Textbox(
|
| 297 |
+
label="Model Response",
|
| 298 |
+
lines=10,
|
| 299 |
+
max_lines=20
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
two_images_submit.click(
|
| 303 |
+
chat_with_two_images,
|
| 304 |
+
inputs=[image1_input, image2_input, two_images_text_input],
|
| 305 |
+
outputs=[two_images_output]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Example prompts
|
| 309 |
+
gr.Examples(
|
| 310 |
+
examples=[
|
| 311 |
+
["What are the main differences between these two images?"],
|
| 312 |
+
["Describe both images briefly."],
|
| 313 |
+
["Which image is more colorful?"],
|
| 314 |
+
["Compare the subjects in these images."]
|
| 315 |
+
],
|
| 316 |
+
inputs=[two_images_text_input]
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# Footer
|
| 320 |
+
gr.Markdown("---")
|
| 321 |
+
gr.Markdown("⚡ Powered by NVIDIA Llama Nemotron Nano VL 8B")
|
| 322 |
+
|
| 323 |
+
return demo
|
| 324 |
+
|
| 325 |
+
# Create and launch the interface
|
| 326 |
+
if __name__ == "__main__":
|
| 327 |
+
demo = create_interface()
|
| 328 |
+
demo.queue() # Enable queuing for Zero GPU
|
| 329 |
+
demo.launch(
|
| 330 |
+
server_name="0.0.0.0",
|
| 331 |
+
server_port=7860
|
| 332 |
+
)
|