Spaces:
Sleeping
Sleeping
Commit
·
7d3eee1
0
Parent(s):
Duplicate from equ1/mnist_interface
Browse filesCo-authored-by: Rushat Rai <[email protected]>
- .gitattributes +27 -0
- README.md +38 -0
- app.py +35 -0
- demo_model.pt +3 -0
- model.py +201 -0
- requirements.txt +4 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Mnist_interface
|
| 3 |
+
emoji: 🐨
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: false
|
| 9 |
+
duplicated_from: equ1/mnist_interface
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Configuration
|
| 13 |
+
|
| 14 |
+
`title`: _string_
|
| 15 |
+
Display title for the Space
|
| 16 |
+
|
| 17 |
+
`emoji`: _string_
|
| 18 |
+
Space emoji (emoji-only character allowed)
|
| 19 |
+
|
| 20 |
+
`colorFrom`: _string_
|
| 21 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
| 22 |
+
|
| 23 |
+
`colorTo`: _string_
|
| 24 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
| 25 |
+
|
| 26 |
+
`sdk`: _string_
|
| 27 |
+
Can be either `gradio`, `streamlit`, or `static`
|
| 28 |
+
|
| 29 |
+
`sdk_version` : _string_
|
| 30 |
+
Only applicable for `streamlit` SDK.
|
| 31 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
| 32 |
+
|
| 33 |
+
`app_file`: _string_
|
| 34 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
|
| 35 |
+
Path is relative to the root of the repository.
|
| 36 |
+
|
| 37 |
+
`pinned`: _boolean_
|
| 38 |
+
Whether the Space stays on top of your list.
|
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision.transforms as transforms
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from model import Net
|
| 8 |
+
|
| 9 |
+
# loads demo model
|
| 10 |
+
if torch.cuda.is_available():
|
| 11 |
+
dev = "cuda:0"
|
| 12 |
+
else:
|
| 13 |
+
dev = "cpu"
|
| 14 |
+
|
| 15 |
+
device = torch.device(dev)
|
| 16 |
+
|
| 17 |
+
model = torch.load(f"./demo_model.pt", map_location=device)
|
| 18 |
+
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
# inference function
|
| 22 |
+
def inference(img):
|
| 23 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.Resize((28, 28))])
|
| 24 |
+
img = transform(img).unsqueeze(0) # transforms ndarray and adds batch dimension
|
| 25 |
+
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
output_probabilities = F.softmax(model(img), dim=1)[0] # probability prediction for each label
|
| 28 |
+
|
| 29 |
+
return {labels[i]: float(output_probabilities[i]) for i in range(len(labels))}
|
| 30 |
+
|
| 31 |
+
# Creates and launches gradio interface
|
| 32 |
+
labels = range(10) # 1-9 labels
|
| 33 |
+
outputs = gr.outputs.Label(num_top_classes=5)
|
| 34 |
+
gr.Interface(fn=inference, inputs='sketchpad', outputs=outputs, title="MNIST Interface",
|
| 35 |
+
description="Draw a number from 0-9 in the box and click submit to see the model's predictions.").launch()
|
demo_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2765565b764406ab6431ccfe1894e3079c04b876a3154278229848b3d83bc65e
|
| 3 |
+
size 1120569
|
model.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torchvision.datasets as datasets
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
+
import torch.optim as optim
|
| 10 |
+
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_mean_std(loader):
|
| 15 |
+
'''
|
| 16 |
+
Calculates mean and std of input images.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
loader (torch.DataLoader): Loader with images
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
mean (torch.Tensor): Mean of images in loader
|
| 23 |
+
std (torch.Tensor): Standard deviation of images in loader
|
| 24 |
+
'''
|
| 25 |
+
channels_sum, channels_squared_sum, num_batches = 0, 0, 0
|
| 26 |
+
|
| 27 |
+
for data, _ in loader:
|
| 28 |
+
channels_sum += torch.mean(data, dim=[0,2,3]) # mean across [no. of examples, height, width]
|
| 29 |
+
channels_squared_sum += torch.mean(data**2, dim=[0,2,3]) # squared mean across [no. of examples, height, width]
|
| 30 |
+
num_batches += 1
|
| 31 |
+
|
| 32 |
+
mean = channels_sum/num_batches
|
| 33 |
+
std = (channels_squared_sum/(num_batches-mean**2))**0.5
|
| 34 |
+
|
| 35 |
+
return mean, std
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class Net(nn.Module):
|
| 39 |
+
'''
|
| 40 |
+
model definition
|
| 41 |
+
'''
|
| 42 |
+
|
| 43 |
+
def __init__(self):
|
| 44 |
+
super(Net, self).__init__()
|
| 45 |
+
|
| 46 |
+
self.layer1 = nn.Sequential(
|
| 47 |
+
nn.Conv2d(1, 32, kernel_size=5),
|
| 48 |
+
nn.ReLU(),
|
| 49 |
+
)
|
| 50 |
+
self.layer2 = nn.Sequential(
|
| 51 |
+
nn.Conv2d(32, 32, kernel_size=5, bias=False),
|
| 52 |
+
nn.BatchNorm2d(32),
|
| 53 |
+
nn.ReLU(),
|
| 54 |
+
nn.MaxPool2d((2, 2)),
|
| 55 |
+
nn.Dropout2d(0.25),
|
| 56 |
+
)
|
| 57 |
+
self.layer3 = nn.Sequential(
|
| 58 |
+
nn.Conv2d(32, 64, kernel_size=3),
|
| 59 |
+
nn.ReLU(),
|
| 60 |
+
)
|
| 61 |
+
self.layer4 = nn.Sequential(
|
| 62 |
+
nn.Conv2d(64, 64, kernel_size=3, bias=False),
|
| 63 |
+
nn.BatchNorm2d(64),
|
| 64 |
+
nn.ReLU(),
|
| 65 |
+
nn.MaxPool2d((2, 2)),
|
| 66 |
+
nn.Dropout2d(0.25),
|
| 67 |
+
nn.Flatten(),
|
| 68 |
+
)
|
| 69 |
+
self.layer5 = nn.Sequential(
|
| 70 |
+
nn.Linear(576, 256, bias=False),
|
| 71 |
+
nn.BatchNorm1d(256),
|
| 72 |
+
nn.ReLU(),
|
| 73 |
+
)
|
| 74 |
+
self.layer6 = nn.Sequential(
|
| 75 |
+
nn.Linear(256, 128, bias=False),
|
| 76 |
+
nn.BatchNorm1d(128),
|
| 77 |
+
nn.ReLU(),
|
| 78 |
+
)
|
| 79 |
+
self.layer7 = nn.Sequential(
|
| 80 |
+
nn.Linear(128, 84, bias=False),
|
| 81 |
+
nn.BatchNorm1d(84),
|
| 82 |
+
nn.ReLU(),
|
| 83 |
+
nn.Dropout(0.25),
|
| 84 |
+
)
|
| 85 |
+
self.layer8 = nn.Sequential(
|
| 86 |
+
nn.Linear(84, 10),
|
| 87 |
+
nn.LogSoftmax(dim=1),
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
x = transforms.Normalize(mean, std)(x)
|
| 92 |
+
x = self.layer1(x)
|
| 93 |
+
x = self.layer2(x)
|
| 94 |
+
x = self.layer3(x)
|
| 95 |
+
x = self.layer4(x)
|
| 96 |
+
x = self.layer5(x)
|
| 97 |
+
x = self.layer6(x)
|
| 98 |
+
x = self.layer7(x)
|
| 99 |
+
x = self.layer8(x)
|
| 100 |
+
|
| 101 |
+
return x
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# downloads and loads MNIST train set
|
| 105 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.RandomAffine(degrees=10, translate=(0.1,0.1))])
|
| 106 |
+
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
| 107 |
+
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True, pin_memory=True)
|
| 108 |
+
|
| 109 |
+
# downloads and loads MNIST test set
|
| 110 |
+
val_data = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
|
| 111 |
+
val_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=False, pin_memory=True)
|
| 112 |
+
|
| 113 |
+
# uses GPU if available
|
| 114 |
+
if torch.cuda.is_available():
|
| 115 |
+
dev = "cuda:0"
|
| 116 |
+
else:
|
| 117 |
+
dev = "cpu"
|
| 118 |
+
|
| 119 |
+
device = torch.device(dev)
|
| 120 |
+
|
| 121 |
+
# gets mean and std of dataset
|
| 122 |
+
mean, std = get_mean_std(train_loader)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def run_model():
|
| 126 |
+
# defines parameters
|
| 127 |
+
model = Net().to(device=device)
|
| 128 |
+
optimizer = optim.Adam(model.parameters(), lr=0.1)
|
| 129 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=2)
|
| 130 |
+
criterion = nn.NLLLoss()
|
| 131 |
+
|
| 132 |
+
# iterates through epochs
|
| 133 |
+
for epoch in range(30):
|
| 134 |
+
print(f"\nEpoch {epoch+1}/{30}.")
|
| 135 |
+
|
| 136 |
+
# train loop
|
| 137 |
+
model.train()
|
| 138 |
+
|
| 139 |
+
total_train_loss = 0
|
| 140 |
+
total_correct = 0
|
| 141 |
+
|
| 142 |
+
for i, (images, labels) in enumerate(tqdm(train_loader)):
|
| 143 |
+
images = images.to(device)
|
| 144 |
+
labels = labels.to(device)
|
| 145 |
+
|
| 146 |
+
optimizer.zero_grad()
|
| 147 |
+
|
| 148 |
+
outputs = model(images)
|
| 149 |
+
|
| 150 |
+
loss = criterion(outputs, labels)
|
| 151 |
+
total_train_loss += loss.item()
|
| 152 |
+
|
| 153 |
+
loss.backward()
|
| 154 |
+
optimizer.step()
|
| 155 |
+
|
| 156 |
+
# Calculates train accuracy
|
| 157 |
+
outputs_probs = nn.functional.softmax(
|
| 158 |
+
outputs, dim=1) # gets probabilities
|
| 159 |
+
for idx, preds in enumerate(outputs_probs):
|
| 160 |
+
# if label with max probability matches true label
|
| 161 |
+
if labels[idx] == torch.argmax(preds.data):
|
| 162 |
+
total_correct += 1
|
| 163 |
+
|
| 164 |
+
train_loss = total_train_loss/(i+1)
|
| 165 |
+
train_accuracy = total_correct/len(train_data)
|
| 166 |
+
|
| 167 |
+
print(f"Train set:- Loss: {train_loss}, Accuracy: {train_accuracy}.")
|
| 168 |
+
|
| 169 |
+
# saves model state
|
| 170 |
+
if not os.path.exists("./saved_models"):
|
| 171 |
+
os.mkdir("./saved_models")
|
| 172 |
+
torch.save(model.state_dict(), f"./saved_models/mnist-cnn-{time.time()}.pt")
|
| 173 |
+
|
| 174 |
+
# val loop
|
| 175 |
+
model.eval()
|
| 176 |
+
|
| 177 |
+
total_val_loss = 0
|
| 178 |
+
total_correct = 0
|
| 179 |
+
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
for i, (images, labels) in enumerate(tqdm(val_loader)):
|
| 182 |
+
images = images.to(device)
|
| 183 |
+
labels = labels.to(device)
|
| 184 |
+
|
| 185 |
+
outputs = model(images)
|
| 186 |
+
|
| 187 |
+
loss = criterion(outputs, labels)
|
| 188 |
+
total_val_loss += loss.item()
|
| 189 |
+
|
| 190 |
+
outputs_probs = nn.functional.softmax(outputs, dim=1)
|
| 191 |
+
for idx, preds in enumerate(outputs_probs):
|
| 192 |
+
if labels[idx] == torch.argmax(preds.data):
|
| 193 |
+
total_correct += 1
|
| 194 |
+
|
| 195 |
+
val_loss = total_val_loss/(i+1)
|
| 196 |
+
val_accuracy = total_correct/len(val_data)
|
| 197 |
+
|
| 198 |
+
print(f"Val set:- Loss: {val_loss}, Accuracy: {val_accuracy}.")
|
| 199 |
+
|
| 200 |
+
# adjusts lr
|
| 201 |
+
scheduler.step(val_loss)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
tqdm
|