Spaces:
Runtime error
Runtime error
Hope-Liang
commited on
Commit
·
217da35
1
Parent(s):
5a056d9
update
Browse files- app.py +36 -0
- preprocessor_pipeline.py +172 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sodapy import Socrata
|
| 4 |
+
import hopsworks
|
| 5 |
+
import joblib
|
| 6 |
+
import xgboost as xgb
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
st.set_page_config(layout="wide")
|
| 10 |
+
st.title('Latest SF incident category prediction')
|
| 11 |
+
|
| 12 |
+
client = Socrata("data.sfgov.org", "gZmg4iarmENBTk1Vzsb94bnse", username="[email protected]", password="Xw990504")
|
| 13 |
+
results = client.get("wg3w-h783", limit=800000)
|
| 14 |
+
results_df = pd.DataFrame.from_records(results)
|
| 15 |
+
|
| 16 |
+
from preprocessor_pipeline import preprocessing_incident
|
| 17 |
+
results_df_preprocessed = preprocessing_incident(results_df)
|
| 18 |
+
results_df_preprocessed.incident_datetime=pd.to_datetime(results_df_preprocessed.incident_datetime)
|
| 19 |
+
results_df_preprocessed.sort_values(by='incident_datetime', ascending = False, inplace = True)
|
| 20 |
+
results_df_preprocessed=results_df_preprocessed[:100]
|
| 21 |
+
|
| 22 |
+
project = hopsworks.login()
|
| 23 |
+
fs = project.get_feature_store()
|
| 24 |
+
mr = project.get_model_registry()
|
| 25 |
+
model = mr.get_model("incident_modal", version=1)
|
| 26 |
+
model_dir = model.download()
|
| 27 |
+
model = joblib.load(model_dir + "/incident_model.pkl")
|
| 28 |
+
|
| 29 |
+
batch_data = results_df_preprocessed
|
| 30 |
+
batch_data.drop(columns=['incident_datetime','incident_category'], inplace=True)
|
| 31 |
+
y_pred = model.predict(batch_data)
|
| 32 |
+
|
| 33 |
+
df = results_df_preprocessed
|
| 34 |
+
|
| 35 |
+
st.write(df)
|
| 36 |
+
st.button("Re-run")
|
preprocessor_pipeline.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 4 |
+
from sklearn.compose import ColumnTransformer
|
| 5 |
+
from sklearn.impute import SimpleImputer
|
| 6 |
+
from sklearn.pipeline import make_pipeline
|
| 7 |
+
from sklearn.feature_extraction.text import _VectorizerMixin
|
| 8 |
+
from sklearn.feature_selection._base import SelectorMixin
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
|
| 11 |
+
def merge_category(x):
|
| 12 |
+
if x == "Human Trafficking (A), Commercial Sex Acts":
|
| 13 |
+
return "Human Trafficking"
|
| 14 |
+
elif x == "Human Trafficking (B), Involuntary Servitude":
|
| 15 |
+
return "Human Trafficking"
|
| 16 |
+
elif x == "Human Trafficking, Commercial Sex Acts":
|
| 17 |
+
return "Human Trafficking"
|
| 18 |
+
elif x == "Weapons Offence":
|
| 19 |
+
return "Weapons Offense"
|
| 20 |
+
elif x == "Drug Violation":
|
| 21 |
+
return "Drug Offense"
|
| 22 |
+
elif x == "Motor Vehicle Theft?":
|
| 23 |
+
return "Motor Vehicle Theft"
|
| 24 |
+
elif x == "Suspicious Occ":
|
| 25 |
+
return "Suspicious"
|
| 26 |
+
elif x == "Rape":
|
| 27 |
+
return "Sex Offense"
|
| 28 |
+
else:
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
def merge_category_2(x):
|
| 32 |
+
if x == "Gambling":
|
| 33 |
+
return "Other"
|
| 34 |
+
elif x == "Homicide":
|
| 35 |
+
return "Other"
|
| 36 |
+
elif x == "Human Trafficking":
|
| 37 |
+
return "Other"
|
| 38 |
+
elif x == "Liquor Laws":
|
| 39 |
+
return "Other"
|
| 40 |
+
elif x == "Other Miscellaneous":
|
| 41 |
+
return "Other"
|
| 42 |
+
elif x == "Weapons Carrying Etc":
|
| 43 |
+
return "Weapons Offense"
|
| 44 |
+
elif x == "Offences Against The Family And Children":
|
| 45 |
+
return "Other Offenses"
|
| 46 |
+
elif x == "Sex Offense":
|
| 47 |
+
return "Other Offenses"
|
| 48 |
+
elif x == "Prostitution":
|
| 49 |
+
return "Other"
|
| 50 |
+
elif x == "Case Closure":
|
| 51 |
+
return "Other"
|
| 52 |
+
elif x == "Courtesy Report":
|
| 53 |
+
return "Other"
|
| 54 |
+
elif x == "Fire Report":
|
| 55 |
+
return "Other"
|
| 56 |
+
elif x == "Suicide":
|
| 57 |
+
return "Other"
|
| 58 |
+
elif x == "Embezzlement":
|
| 59 |
+
return "Financial Offense"
|
| 60 |
+
elif x == "Forgery And Counterfeiting":
|
| 61 |
+
return "Financial Offense"
|
| 62 |
+
elif x == "Fraud":
|
| 63 |
+
return "Financial Offense"
|
| 64 |
+
elif x == "Lost Property":
|
| 65 |
+
return "Financial Offense"
|
| 66 |
+
elif x == "Stolen Property":
|
| 67 |
+
return "Financial Offense"
|
| 68 |
+
elif x == "Motor Vehicle Theft":
|
| 69 |
+
return "Traffic and Vehicle Offense"
|
| 70 |
+
elif x == "Recovered Vehicle":
|
| 71 |
+
return "Traffic and Vehicle Offense"
|
| 72 |
+
elif x == "Traffic Collision":
|
| 73 |
+
return "Traffic and Vehicle Offense"
|
| 74 |
+
elif x == "Traffic Violation Arrest":
|
| 75 |
+
return "Traffic and Vehicle Offense"
|
| 76 |
+
elif x == "Vehicle Impounded":
|
| 77 |
+
return "Traffic and Vehicle Offense"
|
| 78 |
+
elif x == "Vehicle Misplaced":
|
| 79 |
+
return "Traffic and Vehicle Offense"
|
| 80 |
+
elif x == "Civil Sidewalks":
|
| 81 |
+
return "Traffic and Vehicle Offense"
|
| 82 |
+
elif x == "Burglary":
|
| 83 |
+
return "Theft and Robbery"
|
| 84 |
+
elif x == "Larceny Theft":
|
| 85 |
+
return "Theft and Robbery"
|
| 86 |
+
elif x == "Robbery":
|
| 87 |
+
return "Theft and Robbery"
|
| 88 |
+
elif x == "Arson":
|
| 89 |
+
return "Assault"
|
| 90 |
+
elif x == "Disorderly Conduct":
|
| 91 |
+
return "Other Offenses"
|
| 92 |
+
elif x == "Vandalism":
|
| 93 |
+
return "Malicious Mischief"
|
| 94 |
+
elif x == "Miscellaneous Investigation":
|
| 95 |
+
return "Suspicious"
|
| 96 |
+
else:
|
| 97 |
+
return x
|
| 98 |
+
|
| 99 |
+
def get_feature_out(estimator, feature_in):
|
| 100 |
+
if hasattr(estimator, 'get_feature_names'):
|
| 101 |
+
if isinstance(estimator, _VectorizerMixin):
|
| 102 |
+
# handling all vectorizers
|
| 103 |
+
return [f'vec_{f}' \
|
| 104 |
+
for f in estimator.get_feature_names()]
|
| 105 |
+
else:
|
| 106 |
+
return estimator.get_feature_names(feature_in)
|
| 107 |
+
elif isinstance(estimator, SelectorMixin):
|
| 108 |
+
return np.array(feature_in)[estimator.get_support()]
|
| 109 |
+
else:
|
| 110 |
+
return feature_in
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def get_ct_feature_names(ct):
|
| 114 |
+
# handles all estimators, pipelines inside ColumnTransfomer
|
| 115 |
+
# doesn't work when remainder =='passthrough'
|
| 116 |
+
# which requires the input column names.
|
| 117 |
+
output_features = []
|
| 118 |
+
|
| 119 |
+
for name, estimator, features in ct.transformers_:
|
| 120 |
+
if name != 'remainder':
|
| 121 |
+
if isinstance(estimator, Pipeline):
|
| 122 |
+
current_features = features
|
| 123 |
+
for step in estimator:
|
| 124 |
+
current_features = get_feature_out(step, current_features)
|
| 125 |
+
features_out = current_features
|
| 126 |
+
else:
|
| 127 |
+
features_out = get_feature_out(estimator, features)
|
| 128 |
+
output_features.extend(features_out)
|
| 129 |
+
elif estimator == 'passthrough':
|
| 130 |
+
output_features.extend(ct._feature_names_in[features])
|
| 131 |
+
|
| 132 |
+
return output_features
|
| 133 |
+
|
| 134 |
+
def preprocessing_incident(incident_df):
|
| 135 |
+
# step 1: dropping irrelavent columns and null values
|
| 136 |
+
incident_df.drop(columns=['incident_date','incident_time','incident_year','report_datetime','row_id','incident_id','incident_number',
|
| 137 |
+
'report_type_description','filed_online','incident_code','incident_subcategory',
|
| 138 |
+
'incident_description','resolution','cad_number','intersection','cnn','analysis_neighborhood',
|
| 139 |
+
'supervisor_district','point',':@computed_region_jwn9_ihcz',':@computed_region_26cr_cadq',
|
| 140 |
+
':@computed_region_qgnn_b9vv',':@computed_region_nqbw_i6c3',':@computed_region_h4ep_8xdi',
|
| 141 |
+
':@computed_region_n4xg_c4py',':@computed_region_jg9y_a9du'], inplace=True)
|
| 142 |
+
incident_df.dropna(inplace=True)
|
| 143 |
+
|
| 144 |
+
# step 2: create new columns
|
| 145 |
+
incident_df['incident_month']=pd.to_datetime(incident_df["incident_datetime"]).dt.month
|
| 146 |
+
incident_df['incident_year']=pd.to_datetime(incident_df["incident_datetime"]).dt.year
|
| 147 |
+
incident_df['incident_hour']=pd.to_datetime(incident_df["incident_datetime"]).dt.hour
|
| 148 |
+
#incident_df['incident_dayofweek']=pd.to_datetime(incident_df["incident_datetime"]).dt.dayofweek
|
| 149 |
+
|
| 150 |
+
# step 3: merging labels
|
| 151 |
+
incident_df['incident_category']=incident_df['incident_category'].apply(merge_category)
|
| 152 |
+
incident_df['incident_category']=incident_df['incident_category'].apply(merge_category_2)
|
| 153 |
+
|
| 154 |
+
# step 4: onehot encoding using column Transformer Settings
|
| 155 |
+
|
| 156 |
+
t = [('ohe-cat', OneHotEncoder(sparse=False, handle_unknown='ignore'), ['incident_day_of_week', 'report_type_code','police_district']),
|
| 157 |
+
('do_nothing', SimpleImputer(strategy='most_frequent'), ['incident_datetime', 'incident_category', 'latitude', 'longitude', 'incident_month', 'incident_year', 'incident_hour']),
|
| 158 |
+
]
|
| 159 |
+
pre_processor = ColumnTransformer(transformers=t, remainder='drop')
|
| 160 |
+
incident_df_processed = pre_processor.fit_transform(X=incident_df)
|
| 161 |
+
# Get column names
|
| 162 |
+
columns = get_ct_feature_names(pre_processor)
|
| 163 |
+
incident_df_processed = pd.DataFrame(incident_df_processed, columns=columns)
|
| 164 |
+
|
| 165 |
+
# step 5: change column types and names
|
| 166 |
+
|
| 167 |
+
numeric_columns = incident_df_processed.columns.drop(['incident_datetime','incident_category'])
|
| 168 |
+
incident_df_processed[numeric_columns] = incident_df_processed[numeric_columns].apply(pd.to_numeric)
|
| 169 |
+
incident_df_processed['incident_datetime'] = incident_df_processed['incident_datetime'].apply(pd.to_datetime)
|
| 170 |
+
incident_df_processed.rename(columns={"police_district_Out of SF": "police_district_OutOfSF"},inplace=True)
|
| 171 |
+
|
| 172 |
+
return incident_df_processed
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
hopsworks
|
| 2 |
+
joblib
|
| 3 |
+
scikit-learn
|
| 4 |
+
sodapy
|
| 5 |
+
pandas
|
| 6 |
+
xgboost
|