Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # The file source is from the [ESRGAN](https://github.com/xinntao/ESRGAN) project | |
| # forked by authors [joeyballentine](https://github.com/joeyballentine/ESRGAN) and [BlueAmulet](https://github.com/BlueAmulet/ESRGAN). | |
| import gc | |
| import numpy as np | |
| import torch | |
| def bgr_to_rgb(image: torch.Tensor) -> torch.Tensor: | |
| # flip image channels | |
| # https://github.com/pytorch/pytorch/issues/229 | |
| out: torch.Tensor = image.flip(-3) | |
| # out: torch.Tensor = image[[2, 1, 0], :, :] #RGB to BGR #may be faster | |
| return out | |
| def rgb_to_bgr(image: torch.Tensor) -> torch.Tensor: | |
| # same operation as bgr_to_rgb(), flip image channels | |
| return bgr_to_rgb(image) | |
| def bgra_to_rgba(image: torch.Tensor) -> torch.Tensor: | |
| out: torch.Tensor = image[[2, 1, 0, 3], :, :] | |
| return out | |
| def rgba_to_bgra(image: torch.Tensor) -> torch.Tensor: | |
| # same operation as bgra_to_rgba(), flip image channels | |
| return bgra_to_rgba(image) | |
| def auto_split_upscale( | |
| lr_img: np.ndarray, | |
| upscale_function, | |
| scale: int = 4, | |
| overlap: int = 32, | |
| max_depth: int = None, | |
| current_depth: int = 1, | |
| ): | |
| # Attempt to upscale if unknown depth or if reached known max depth | |
| if max_depth is None or max_depth == current_depth: | |
| try: | |
| print(f"auto_split_upscale, current depth: {current_depth}") | |
| result, _ = upscale_function(lr_img, scale) | |
| return result, current_depth | |
| except RuntimeError as e: | |
| # Check to see if its actually the CUDA out of memory error | |
| if "CUDA" in str(e): | |
| # Collect garbage (clear VRAM) | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| # Re-raise the exception if not an OOM error | |
| else: | |
| raise RuntimeError(e) | |
| finally: | |
| # Free GPU memory and clean up resources | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| h, w, c = lr_img.shape | |
| # Split image into 4ths | |
| top_left = lr_img[: h // 2 + overlap, : w // 2 + overlap, :] | |
| top_right = lr_img[: h // 2 + overlap, w // 2 - overlap :, :] | |
| bottom_left = lr_img[h // 2 - overlap :, : w // 2 + overlap, :] | |
| bottom_right = lr_img[h // 2 - overlap :, w // 2 - overlap :, :] | |
| # Recursively upscale the quadrants | |
| # After we go through the top left quadrant, we know the maximum depth and no longer need to test for out-of-memory | |
| top_left_rlt, depth = auto_split_upscale( | |
| top_left, | |
| upscale_function, | |
| scale=scale, | |
| overlap=overlap, | |
| max_depth=max_depth, | |
| current_depth=current_depth + 1, | |
| ) | |
| top_right_rlt, _ = auto_split_upscale( | |
| top_right, | |
| upscale_function, | |
| scale=scale, | |
| overlap=overlap, | |
| max_depth=depth, | |
| current_depth=current_depth + 1, | |
| ) | |
| bottom_left_rlt, _ = auto_split_upscale( | |
| bottom_left, | |
| upscale_function, | |
| scale=scale, | |
| overlap=overlap, | |
| max_depth=depth, | |
| current_depth=current_depth + 1, | |
| ) | |
| bottom_right_rlt, _ = auto_split_upscale( | |
| bottom_right, | |
| upscale_function, | |
| scale=scale, | |
| overlap=overlap, | |
| max_depth=depth, | |
| current_depth=current_depth + 1, | |
| ) | |
| # Define output shape | |
| out_h = h * scale | |
| out_w = w * scale | |
| # Create blank output image | |
| output_img = np.zeros((out_h, out_w, c), np.uint8) | |
| # Fill output image with tiles, cropping out the overlaps | |
| output_img[: out_h // 2, : out_w // 2, :] = top_left_rlt[ | |
| : out_h // 2, : out_w // 2, : | |
| ] | |
| output_img[: out_h // 2, -out_w // 2 :, :] = top_right_rlt[ | |
| : out_h // 2, -out_w // 2 :, : | |
| ] | |
| output_img[-out_h // 2 :, : out_w // 2, :] = bottom_left_rlt[ | |
| -out_h // 2 :, : out_w // 2, : | |
| ] | |
| output_img[-out_h // 2 :, -out_w // 2 :, :] = bottom_right_rlt[ | |
| -out_h // 2 :, -out_w // 2 :, : | |
| ] | |
| return output_img, depth | |