Lesterchia174's picture
Update app.py
58407db verified
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import gradio as gr
import joblib
from sklearn.preprocessing import LabelEncoder
# Load the trained XGBoost model
try:
model = joblib.load('best_model_xgboost.joblib')
print("XGBoost model loaded successfully!")
except FileNotFoundError:
print("Warning: best_model_xgboost.joblib not found. Using fallback model.")
model = None
except Exception as e:
print(f"Error loading model: {e}")
model = None
# Sample data generation (for market insights when model is available)
def generate_sample_data():
np.random.seed(42)
n_samples = 1000
towns = ['ANG MO KIO', 'BEDOK', 'BISHAN', 'BUKIT BATOK', 'BUKIT MERAH', 'BUKIT PANJANG', 'BUKIT TIMAH', 'CENTRAL AREA', 'CHOA CHU KANG', 'CLEMENTI', 'GEYLANG', 'HOUGANG', 'JURONG EAST', 'JURONG WEST', 'KALLANG/WHAMPOA', 'MARINE PARADE', 'PASIR RIS', 'PUNGGOL', 'QUEENSTOWN', 'SEMBAWANG', 'SENGKANG', 'SERANGOON', 'TAMPINES', 'TOA PAYOH', 'WOODLANDS', 'YISHUN' ]
flat_types = ['2 ROOM', '3 ROOM', '4 ROOM', '5 ROOM', 'EXECUTIVE', 'MULTI-GENERATION']
flat_models = ['2 ROOM', '3Gen', 'Adjoined flat', 'Apartment', 'DBSS', 'Improved', 'Improved-Maisonette', 'Maisonette', 'Model A', 'Model A-Maisonette', 'Model-A2', 'MULTI-GENERATION', 'New Generation', 'Premium Apartment', 'Premium Apartment Loft', 'Simplified', 'Standard', 'Type S1', 'Type S2']
data = {
'town': np.random.choice(towns, n_samples),
'flat_type': np.random.choice(flat_types, n_samples),
'flat_model': np.random.choice(flat_models, n_samples),
'floor_area_sqm': np.random.uniform(60, 150, n_samples),
'storey_level': np.random.randint(1, 25, n_samples),
'flat_age': np.random.randint(0, 50, n_samples),
'resale_price': np.random.uniform(200000, 800000, n_samples)
}
return pd.DataFrame(data)
# Load or create sample data
data = generate_sample_data()
# Create encoders for categorical variables (should match training data)
towns_list = sorted(data['town'].unique().tolist())
flat_types = sorted(data['flat_type'].unique().tolist())
flat_models = sorted(data['flat_model'].unique().tolist())
# Create label encoders (these should match what was used during training)
town_encoder = LabelEncoder()
flat_type_encoder = LabelEncoder()
flat_model_encoder = LabelEncoder()
# Fit encoders with the categories
town_encoder.fit(towns_list)
flat_type_encoder.fit(flat_types)
flat_model_encoder.fit(flat_models)
def simple_xgboost_emulation(input_data):
"""Fallback function if the model is not available"""
weights = {
'floor_area_sqm': 5200,
'storey_level': 1800,
'flat_age': -2800,
'remaining_lease': 1200,
'town_factor': 9500,
'flat_type_factor': 14500,
'flat_model_factor': 8500,
'base_price': 220000,
'interaction_factor': 500
}
# Calculate factors
town_factor = towns_list.index(input_data['town']) * weights['town_factor']
flat_type_factor = flat_types.index(input_data['flat_type']) * weights['flat_type_factor']
flat_model_factor = flat_models.index(input_data['flat_model']) * weights['flat_model_factor']
# Simulate tree interactions
interaction = (input_data['floor_area_sqm'] * input_data['storey_level']) / 100 * weights['interaction_factor']
# Calculate price
price = (weights['base_price'] +
input_data['floor_area_sqm'] * weights['floor_area_sqm'] +
input_data['storey_level'] * weights['storey_level'] +
input_data['flat_age'] * weights['flat_age'] +
input_data['remaining_lease'] * weights['remaining_lease'] +
town_factor + flat_type_factor + flat_model_factor + interaction)
return max(price, 100000)
def preprocess_input(town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age):
"""Preprocess user input into a format suitable for the model."""
input_data = {
'town': town,
'flat_type': flat_type,
'flat_model': flat_model,
'floor_area_sqm': float(floor_area_sqm),
'storey_level': int(storey_level),
'flat_age': int(flat_age),
'remaining_lease': 99 - int(flat_age)
}
return input_data
def prepare_features_for_model(input_data):
"""Prepare features in the exact format expected by the trained model"""
# Create a DataFrame with the same structure as during training
features = pd.DataFrame([{
'town': input_data['town'],
'flat_type': input_data['flat_type'],
'flat_model': input_data['flat_model'],
'floor_area_sqm': input_data['floor_area_sqm'],
'storey_level': input_data['storey_level'],
'flat_age': input_data['flat_age'],
'remaining_lease': input_data['remaining_lease']
}])
# Encode categorical variables (using the same encoders as during training)
features['town_encoded'] = town_encoder.transform([input_data['town']])[0]
features['flat_type_encoded'] = flat_type_encoder.transform([input_data['flat_type']])[0]
features['flat_model_encoded'] = flat_model_encoder.transform([input_data['flat_model']])[0]
# Select only the numerical features for prediction
numerical_features = features[['floor_area_sqm', 'storey_level', 'flat_age',
'remaining_lease', 'town_encoded',
'flat_type_encoded', 'flat_model_encoded']]
return numerical_features
def predict_with_xgboost(input_data):
"""Make prediction using the loaded XGBoost model"""
if model is None:
return simple_xgboost_emulation(input_data)
try:
# Prepare features
features = prepare_features_for_model(input_data)
# Make prediction
prediction = model.predict(features)[0]
return max(prediction, 100000) # Ensure minimum price
except Exception as e:
print(f"Prediction error: {e}")
# Fallback to emulation
return simple_xgboost_emulation(input_data)
def create_market_insights_chart(data, town, flat_type, predicted_price):
"""
Generate a simple text-based market insight.
"""
# Filter data for the specific town and flat type
filtered_data = data[(data['town'] == town) & (data['flat_type'] == flat_type)]
if filtered_data.empty:
return "No historical data available for this town and flat type combination."
# Calculate some basic statistics
avg_price = filtered_data['resale_price'].mean()
min_price = filtered_data['resale_price'].min()
max_price = filtered_data['resale_price'].max()
count = len(filtered_data)
# Compare prediction with historical average
price_difference = predicted_price - avg_price
percentage_diff = (price_difference / avg_price) * 100 if avg_price > 0 else 0
insight_text = f"""
## Market Insights for {town} - {flat_type}
- Historical transactions: {count}
- Average price: ${avg_price:,.2f}
- Price range: ${min_price:,.2f} - ${max_price:,.2f}
### Prediction Analysis:
- Predicted Price: ${predicted_price:,.2f}
- Difference from average: {percentage_diff:+.1f}%
*Note: Market insights are based on simulated data. Prediction uses {'XGBoost model' if model else 'fallback model'}.*
"""
return insight_text
def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age):
"""Predict the HDB resale price using the selected model."""
# Validate inputs
try:
floor_area_sqm = float(floor_area_sqm)
storey_level = int(storey_level)
flat_age = int(flat_age)
if floor_area_sqm <= 0 or storey_level <= 0 or flat_age < 0:
return "Invalid input: Please enter positive values.", "Invalid input", "Invalid input"
except ValueError:
return "Please enter valid numbers for floor area, storey level, and flat age.", "Invalid input", "Invalid input"
# Preprocess the user input
input_data = preprocess_input(town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age)
# Make prediction using XGBoost model
predicted_price = predict_with_xgboost(input_data)
# Generate insights
insights = create_market_insights_chart(
data=data,
town=town,
flat_type=flat_type,
predicted_price=predicted_price
)
model_source = "XGBoost model" if model else "fallback model"
summary = f"""
### Property Details 🏑
- **Town:** {town}
- **Flat Type:** {flat_type}
- **Flat Model:** {flat_model}
- **Floor Area:** {floor_area_sqm} sqm
- **Storey Level:** {storey_level}
- **Flat Age:** {flat_age} years
---
### Prediction Summary
The predicted price is **${predicted_price:,.2f}**.
*Prediction made using {model_source}. Market insights based on simulated data.*
"""
return f"${predicted_price:,.2f}", insights, summary
# Create the Gradio interface
with gr.Blocks(title="HDB Resale Price Predictor", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏘️ HDB Resale Price Predictor")
gr.Markdown("Estimate the resale price of HDB flats in Singapore based on property features.")
# Display model status
if model:
gr.Markdown("βœ… **XGBoost model loaded successfully!**")
else:
gr.Markdown("⚠️ **Using fallback model - XGBoost model not found**")
with gr.Row():
with gr.Column():
town = gr.Dropdown(choices=towns_list, label="Town", value="ANG MO KIO")
flat_type = gr.Dropdown(choices=flat_types, label="Flat Type", value="4 ROOM")
flat_model = gr.Dropdown(choices=flat_models, label="Flat Model", value="Improved")
floor_area_sqm = gr.Number(label="Floor Area (sqm)", value=100, minimum=1, maximum=500)
storey_level = gr.Slider(minimum=1, maximum=50, step=1, label="Storey Level", value=5)
flat_age = gr.Slider(minimum=0, maximum=99, step=1, label="Flat Age (years)", value=10)
predict_btn = gr.Button("Predict Price", variant="primary")
with gr.Column():
price_output = gr.Label(label="Predicted Resale Price")
insights_output = gr.Markdown()
summary_output = gr.Markdown()
predict_btn.click(
fn=predict_hdb_price,
inputs=[town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age],
outputs=[price_output, insights_output, summary_output]
)
#with gr.Row():
# chart_output = gr.Plot(label="πŸ“ˆ Market Insights")
gr.Examples(
examples=[
["ANG MO KIO", "4 ROOM", "Improved", 100, 5, 10],
["BEDOK", "3 ROOM", "New Generation", 80, 8, 5],
["TAMPINES", "5 ROOM", "Model A", 120, 12, 15]
],
inputs=[town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age]
)
# Launch the application
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)