Update app.py
Browse files
app.py
CHANGED
|
@@ -36,17 +36,17 @@ def get_recommendation(
|
|
| 36 |
None,
|
| 37 |
None,
|
| 38 |
)
|
| 39 |
-
|
| 40 |
# Determine MCC code
|
| 41 |
if use_custom_mcc and custom_mcc:
|
| 42 |
mcc = custom_mcc
|
| 43 |
else:
|
| 44 |
mcc = MCC_CATEGORIES.get(category, "5999")
|
| 45 |
-
|
| 46 |
# Set default date if not provided
|
| 47 |
if not transaction_date:
|
| 48 |
transaction_date = str(date.today())
|
| 49 |
-
|
| 50 |
# Call API
|
| 51 |
response: Dict[str, Any] = client.get_recommendation_sync(
|
| 52 |
user_id=user_id,
|
|
@@ -55,10 +55,10 @@ def get_recommendation(
|
|
| 55 |
amount_usd=amount,
|
| 56 |
transaction_date=transaction_date,
|
| 57 |
)
|
| 58 |
-
|
| 59 |
# Format response
|
| 60 |
formatted_text = format_full_recommendation(response)
|
| 61 |
-
|
| 62 |
# Extract card details for comparison
|
| 63 |
comparison_table: Optional[str]
|
| 64 |
stats: Optional[str]
|
|
@@ -67,7 +67,7 @@ def get_recommendation(
|
|
| 67 |
alternatives: List[Dict[str, Any]] = response.get("alternative_cards", []) or []
|
| 68 |
all_cards = [c for c in ([recommended] + alternatives) if c]
|
| 69 |
comparison_table = format_comparison_table(all_cards) if all_cards else None
|
| 70 |
-
|
| 71 |
# Create summary stats
|
| 72 |
total_analyzed = response.get("total_cards_analyzed", len(all_cards))
|
| 73 |
best_reward = (recommended.get("reward_amount") or 0.0)
|
|
@@ -80,7 +80,7 @@ def get_recommendation(
|
|
| 80 |
else:
|
| 81 |
comparison_table = None
|
| 82 |
stats = None
|
| 83 |
-
|
| 84 |
return formatted_text, comparison_table, stats
|
| 85 |
|
| 86 |
# ===================== Sample Transaction Examples =====================
|
|
@@ -107,6 +107,69 @@ with gr.Blocks(
|
|
| 107 |
font-size: 16px;
|
| 108 |
line-height: 1.6;
|
| 109 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
""",
|
| 111 |
) as app:
|
| 112 |
# Header
|
|
@@ -114,30 +177,30 @@ with gr.Blocks(
|
|
| 114 |
f"""
|
| 115 |
# {APP_TITLE}
|
| 116 |
{APP_DESCRIPTION}
|
|
|
|
| 117 |
Get AI-powered credit card recommendations that maximize your rewards based on:
|
| 118 |
- ๐ฐ **Reward Rates** - Optimal card selection for each purchase
|
| 119 |
- ๐ **Card Benefits** - Detailed information from our knowledge base
|
| 120 |
- โ ๏ธ **Spending Caps** - Risk warnings to avoid missing out on bonuses
|
|
|
|
| 121 |
---
|
| 122 |
"""
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
# Ensure all
|
| 126 |
with gr.Tabs():
|
| 127 |
-
|
| 128 |
# ========== Tab 1: Get Recommendation ==========
|
| 129 |
with gr.Tab("๐ฏ Get Recommendation"):
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column(scale=1):
|
| 132 |
gr.Markdown("### Transaction Details")
|
| 133 |
-
|
| 134 |
user_dropdown = gr.Dropdown(
|
| 135 |
choices=SAMPLE_USERS,
|
| 136 |
value=SAMPLE_USERS[0],
|
| 137 |
label="User ID",
|
| 138 |
info="Select a user"
|
| 139 |
)
|
| 140 |
-
|
| 141 |
# CATEGORY FIRST (moved up)
|
| 142 |
category_dropdown = gr.Dropdown(
|
| 143 |
choices=list(MCC_CATEGORIES.keys()),
|
|
@@ -145,7 +208,7 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 145 |
label="๐ท๏ธ Type of Purchase",
|
| 146 |
info="Select the category first"
|
| 147 |
)
|
| 148 |
-
|
| 149 |
# MERCHANT DROPDOWN (now dynamic)
|
| 150 |
merchant_dropdown = gr.Dropdown(
|
| 151 |
choices=MERCHANTS_BY_CATEGORY["Groceries"],
|
|
@@ -154,20 +217,20 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 154 |
info="Select merchant (changes based on category)",
|
| 155 |
allow_custom_value=True # Allows typing custom merchants
|
| 156 |
)
|
| 157 |
-
|
| 158 |
amount_input = gr.Number(
|
| 159 |
label="๐ต Amount (USD)",
|
| 160 |
value=125.50,
|
| 161 |
minimum=0.01,
|
| 162 |
step=0.01
|
| 163 |
)
|
| 164 |
-
|
| 165 |
date_input = gr.Textbox(
|
| 166 |
label="๐
Transaction Date (Optional)",
|
| 167 |
placeholder="YYYY-MM-DD or leave blank for today",
|
| 168 |
value=""
|
| 169 |
)
|
| 170 |
-
|
| 171 |
# Advanced options
|
| 172 |
with gr.Accordion("โ๏ธ Advanced Options", open=False):
|
| 173 |
use_custom_mcc = gr.Checkbox(
|
|
@@ -179,30 +242,29 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 179 |
placeholder="e.g., 5411",
|
| 180 |
visible=False
|
| 181 |
)
|
| 182 |
-
|
| 183 |
def toggle_custom_mcc(use_custom):
|
| 184 |
return gr.update(visible=use_custom)
|
| 185 |
-
|
| 186 |
use_custom_mcc.change(
|
| 187 |
fn=toggle_custom_mcc,
|
| 188 |
inputs=[use_custom_mcc],
|
| 189 |
outputs=[custom_mcc_input]
|
| 190 |
)
|
| 191 |
-
|
| 192 |
recommend_btn = gr.Button(
|
| 193 |
"๐ Get Recommendation",
|
| 194 |
variant="primary",
|
| 195 |
size="lg"
|
| 196 |
)
|
| 197 |
-
|
| 198 |
with gr.Column(scale=2):
|
| 199 |
gr.Markdown("### ๐ก Recommendation")
|
| 200 |
-
|
| 201 |
recommendation_output = gr.Markdown(
|
| 202 |
value="โจ Select a category and merchant, then click 'Get Recommendation'",
|
| 203 |
elem_classes=["recommendation-output"]
|
| 204 |
)
|
| 205 |
-
|
| 206 |
def update_merchant_choices(category):
|
| 207 |
"""Update merchant dropdown based on selected category"""
|
| 208 |
merchants = MERCHANTS_BY_CATEGORY.get(category, ["Custom Merchant"])
|
|
@@ -210,24 +272,24 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 210 |
choices=merchants,
|
| 211 |
value=merchants[0] if merchants else ""
|
| 212 |
)
|
| 213 |
-
|
| 214 |
# Connect category change to merchant update
|
| 215 |
category_dropdown.change(
|
| 216 |
fn=update_merchant_choices,
|
| 217 |
inputs=[category_dropdown],
|
| 218 |
outputs=[merchant_dropdown]
|
| 219 |
)
|
| 220 |
-
|
| 221 |
# Stats and comparison below
|
| 222 |
with gr.Row():
|
| 223 |
with gr.Column():
|
| 224 |
gr.Markdown("### ๐ Quick Stats")
|
| 225 |
stats_output = gr.Markdown()
|
| 226 |
-
|
| 227 |
with gr.Column():
|
| 228 |
gr.Markdown("### ๐ Card Comparison")
|
| 229 |
comparison_output = gr.Markdown()
|
| 230 |
-
|
| 231 |
# Connect button to function
|
| 232 |
recommend_btn.click(
|
| 233 |
fn=get_recommendation,
|
|
@@ -246,7 +308,7 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 246 |
stats_output
|
| 247 |
]
|
| 248 |
)
|
| 249 |
-
|
| 250 |
# Examples
|
| 251 |
gr.Markdown("### ๐ Example Transactions")
|
| 252 |
gr.Examples(
|
|
@@ -268,28 +330,131 @@ Get AI-powered credit card recommendations that maximize your rewards based on:
|
|
| 268 |
fn=get_recommendation,
|
| 269 |
cache_examples=False
|
| 270 |
)
|
| 271 |
-
|
| 272 |
-
# ========== Tab 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
with gr.Tab("โน๏ธ About"):
|
| 274 |
gr.Markdown(
|
| 275 |
"""
|
| 276 |
## About RewardPilot
|
|
|
|
| 277 |
RewardPilot is an AI-powered credit card recommendation system built using the **Model Context Protocol (MCP)** architecture.
|
| 278 |
|
| 279 |
### ๐๏ธ Architecture
|
|
|
|
| 280 |
The system consists of multiple microservices:
|
|
|
|
| 281 |
1. **Smart Wallet** - Analyzes transaction context and selects optimal cards
|
| 282 |
2. **Rewards-RAG** - Retrieves detailed card benefit information using RAG
|
| 283 |
3. **Spend-Forecast** - Predicts spending patterns and warns about cap risks
|
| 284 |
4. **Orchestrator** - Coordinates all services for comprehensive recommendations
|
| 285 |
|
| 286 |
### ๐ฏ How It Works
|
|
|
|
| 287 |
1. **Enter Transaction Details** - Merchant, amount, category
|
| 288 |
2. **AI Analysis** - System analyzes your wallet and transaction context
|
| 289 |
3. **Get Recommendation** - Receive the best card with detailed reasoning
|
| 290 |
4. **Maximize Rewards** - Earn more points/cashback on every purchase
|
| 291 |
|
| 292 |
### ๐ง Technology Stack
|
|
|
|
| 293 |
- **Backend:** FastAPI, Python
|
| 294 |
- **Frontend:** Gradio
|
| 295 |
- **AI/ML:** RAG (Retrieval-Augmented Generation)
|
|
@@ -297,6 +462,7 @@ The system consists of multiple microservices:
|
|
| 297 |
- **Deployment:** Hugging Face Spaces
|
| 298 |
|
| 299 |
### ๐ MCC Categories Supported
|
|
|
|
| 300 |
- Groceries (5411)
|
| 301 |
- Restaurants (5812)
|
| 302 |
- Gas Stations (5541)
|
|
@@ -306,27 +472,32 @@ The system consists of multiple microservices:
|
|
| 306 |
- And many more...
|
| 307 |
|
| 308 |
### ๐ Built For
|
|
|
|
| 309 |
**MCP 1st Birthday Hackathon** - Celebrating one year of the Model Context Protocol
|
| 310 |
|
| 311 |
### ๐จโ๐ป Developer
|
|
|
|
| 312 |
Built with โค๏ธ for the MCP community
|
| 313 |
|
| 314 |
---
|
|
|
|
| 315 |
**Version:** 1.0.0
|
| 316 |
**Last Updated:** November 2025
|
| 317 |
"""
|
| 318 |
)
|
| 319 |
-
|
| 320 |
-
# ========== Tab
|
| 321 |
with gr.Tab("๐ API Docs"):
|
| 322 |
gr.Markdown(
|
| 323 |
"""
|
| 324 |
## API Endpoints
|
| 325 |
|
| 326 |
### Orchestrator API
|
|
|
|
| 327 |
**Base URL:** `https://mcp-1st-birthday-rewardpilot-orchestrator.hf.space`
|
| 328 |
|
| 329 |
#### POST `/recommend`
|
|
|
|
| 330 |
Get comprehensive card recommendation.
|
| 331 |
|
| 332 |
**Request:**
|
|
@@ -363,18 +534,21 @@ Get comprehensive card recommendation.
|
|
| 363 |
```
|
| 364 |
|
| 365 |
### Other Services
|
|
|
|
| 366 |
- Smart Wallet: https://mcp-1st-birthday-rewardpilot-smart-wallet.hf.space
|
| 367 |
- Rewards-RAG: https://mcp-1st-birthday-rewardpilot-rewards-rag.hf.space
|
| 368 |
- Spend-Forecast: https://mcp-1st-birthday-rewardpilot-spend-forecast.hf.space
|
| 369 |
|
| 370 |
### Interactive Docs
|
|
|
|
| 371 |
Visit `/docs` on any service for interactive Swagger UI documentation.
|
| 372 |
|
| 373 |
### cURL Examples
|
|
|
|
| 374 |
```bash
|
| 375 |
# Get recommendation
|
| 376 |
-
curl -X POST https://mcp-1st-birthday-rewardpilot-orchestrator.hf.space/recommend
|
| 377 |
-
-H "Content-Type: application/json"
|
| 378 |
-d '{
|
| 379 |
"user_id": "u_alice",
|
| 380 |
"merchant": "Whole Foods",
|
|
|
|
| 36 |
None,
|
| 37 |
None,
|
| 38 |
)
|
| 39 |
+
|
| 40 |
# Determine MCC code
|
| 41 |
if use_custom_mcc and custom_mcc:
|
| 42 |
mcc = custom_mcc
|
| 43 |
else:
|
| 44 |
mcc = MCC_CATEGORIES.get(category, "5999")
|
| 45 |
+
|
| 46 |
# Set default date if not provided
|
| 47 |
if not transaction_date:
|
| 48 |
transaction_date = str(date.today())
|
| 49 |
+
|
| 50 |
# Call API
|
| 51 |
response: Dict[str, Any] = client.get_recommendation_sync(
|
| 52 |
user_id=user_id,
|
|
|
|
| 55 |
amount_usd=amount,
|
| 56 |
transaction_date=transaction_date,
|
| 57 |
)
|
| 58 |
+
|
| 59 |
# Format response
|
| 60 |
formatted_text = format_full_recommendation(response)
|
| 61 |
+
|
| 62 |
# Extract card details for comparison
|
| 63 |
comparison_table: Optional[str]
|
| 64 |
stats: Optional[str]
|
|
|
|
| 67 |
alternatives: List[Dict[str, Any]] = response.get("alternative_cards", []) or []
|
| 68 |
all_cards = [c for c in ([recommended] + alternatives) if c]
|
| 69 |
comparison_table = format_comparison_table(all_cards) if all_cards else None
|
| 70 |
+
|
| 71 |
# Create summary stats
|
| 72 |
total_analyzed = response.get("total_cards_analyzed", len(all_cards))
|
| 73 |
best_reward = (recommended.get("reward_amount") or 0.0)
|
|
|
|
| 80 |
else:
|
| 81 |
comparison_table = None
|
| 82 |
stats = None
|
| 83 |
+
|
| 84 |
return formatted_text, comparison_table, stats
|
| 85 |
|
| 86 |
# ===================== Sample Transaction Examples =====================
|
|
|
|
| 107 |
font-size: 16px;
|
| 108 |
line-height: 1.6;
|
| 109 |
}
|
| 110 |
+
/* Metric Cards Styling */
|
| 111 |
+
.metric-card {
|
| 112 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 113 |
+
color: white;
|
| 114 |
+
padding: 30px 20px;
|
| 115 |
+
border-radius: 16px;
|
| 116 |
+
text-align: center;
|
| 117 |
+
box-shadow: 0 8px 24px rgba(102, 126, 234, 0.3);
|
| 118 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
| 119 |
+
margin: 10px;
|
| 120 |
+
}
|
| 121 |
+
.metric-card:hover {
|
| 122 |
+
transform: translateY(-5px);
|
| 123 |
+
box-shadow: 0 12px 32px rgba(102, 126, 234, 0.4);
|
| 124 |
+
}
|
| 125 |
+
.metric-card h2 {
|
| 126 |
+
font-size: 48px;
|
| 127 |
+
font-weight: 700;
|
| 128 |
+
margin: 0 0 10px 0;
|
| 129 |
+
color: white;
|
| 130 |
+
}
|
| 131 |
+
.metric-card p {
|
| 132 |
+
font-size: 16px;
|
| 133 |
+
margin: 0;
|
| 134 |
+
opacity: 0.9;
|
| 135 |
+
color: white;
|
| 136 |
+
}
|
| 137 |
+
.metric-card-green {
|
| 138 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
|
| 139 |
+
}
|
| 140 |
+
.metric-card-orange {
|
| 141 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
| 142 |
+
}
|
| 143 |
+
.metric-card-blue {
|
| 144 |
+
background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
|
| 145 |
+
}
|
| 146 |
+
/* Table styling */
|
| 147 |
+
table {
|
| 148 |
+
width: 100%;
|
| 149 |
+
border-collapse: collapse;
|
| 150 |
+
margin: 20px 0;
|
| 151 |
+
background: white;
|
| 152 |
+
border-radius: 8px;
|
| 153 |
+
overflow: hidden;
|
| 154 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
| 155 |
+
}
|
| 156 |
+
table th {
|
| 157 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 158 |
+
color: white;
|
| 159 |
+
padding: 12px;
|
| 160 |
+
text-align: left;
|
| 161 |
+
font-weight: 600;
|
| 162 |
+
}
|
| 163 |
+
table td {
|
| 164 |
+
padding: 12px;
|
| 165 |
+
border-bottom: 1px solid #f0f0f0;
|
| 166 |
+
}
|
| 167 |
+
table tr:last-child td {
|
| 168 |
+
border-bottom: none;
|
| 169 |
+
}
|
| 170 |
+
table tr:hover {
|
| 171 |
+
background: #f8f9fa;
|
| 172 |
+
}
|
| 173 |
""",
|
| 174 |
) as app:
|
| 175 |
# Header
|
|
|
|
| 177 |
f"""
|
| 178 |
# {APP_TITLE}
|
| 179 |
{APP_DESCRIPTION}
|
| 180 |
+
|
| 181 |
Get AI-powered credit card recommendations that maximize your rewards based on:
|
| 182 |
- ๐ฐ **Reward Rates** - Optimal card selection for each purchase
|
| 183 |
- ๐ **Card Benefits** - Detailed information from our knowledge base
|
| 184 |
- โ ๏ธ **Spending Caps** - Risk warnings to avoid missing out on bonuses
|
| 185 |
+
|
| 186 |
---
|
| 187 |
"""
|
| 188 |
)
|
| 189 |
+
|
| 190 |
+
# Ensure all tabs are siblings at the same level
|
| 191 |
with gr.Tabs():
|
|
|
|
| 192 |
# ========== Tab 1: Get Recommendation ==========
|
| 193 |
with gr.Tab("๐ฏ Get Recommendation"):
|
| 194 |
with gr.Row():
|
| 195 |
with gr.Column(scale=1):
|
| 196 |
gr.Markdown("### Transaction Details")
|
|
|
|
| 197 |
user_dropdown = gr.Dropdown(
|
| 198 |
choices=SAMPLE_USERS,
|
| 199 |
value=SAMPLE_USERS[0],
|
| 200 |
label="User ID",
|
| 201 |
info="Select a user"
|
| 202 |
)
|
| 203 |
+
|
| 204 |
# CATEGORY FIRST (moved up)
|
| 205 |
category_dropdown = gr.Dropdown(
|
| 206 |
choices=list(MCC_CATEGORIES.keys()),
|
|
|
|
| 208 |
label="๐ท๏ธ Type of Purchase",
|
| 209 |
info="Select the category first"
|
| 210 |
)
|
| 211 |
+
|
| 212 |
# MERCHANT DROPDOWN (now dynamic)
|
| 213 |
merchant_dropdown = gr.Dropdown(
|
| 214 |
choices=MERCHANTS_BY_CATEGORY["Groceries"],
|
|
|
|
| 217 |
info="Select merchant (changes based on category)",
|
| 218 |
allow_custom_value=True # Allows typing custom merchants
|
| 219 |
)
|
| 220 |
+
|
| 221 |
amount_input = gr.Number(
|
| 222 |
label="๐ต Amount (USD)",
|
| 223 |
value=125.50,
|
| 224 |
minimum=0.01,
|
| 225 |
step=0.01
|
| 226 |
)
|
| 227 |
+
|
| 228 |
date_input = gr.Textbox(
|
| 229 |
label="๐
Transaction Date (Optional)",
|
| 230 |
placeholder="YYYY-MM-DD or leave blank for today",
|
| 231 |
value=""
|
| 232 |
)
|
| 233 |
+
|
| 234 |
# Advanced options
|
| 235 |
with gr.Accordion("โ๏ธ Advanced Options", open=False):
|
| 236 |
use_custom_mcc = gr.Checkbox(
|
|
|
|
| 242 |
placeholder="e.g., 5411",
|
| 243 |
visible=False
|
| 244 |
)
|
| 245 |
+
|
| 246 |
def toggle_custom_mcc(use_custom):
|
| 247 |
return gr.update(visible=use_custom)
|
| 248 |
+
|
| 249 |
use_custom_mcc.change(
|
| 250 |
fn=toggle_custom_mcc,
|
| 251 |
inputs=[use_custom_mcc],
|
| 252 |
outputs=[custom_mcc_input]
|
| 253 |
)
|
| 254 |
+
|
| 255 |
recommend_btn = gr.Button(
|
| 256 |
"๐ Get Recommendation",
|
| 257 |
variant="primary",
|
| 258 |
size="lg"
|
| 259 |
)
|
| 260 |
+
|
| 261 |
with gr.Column(scale=2):
|
| 262 |
gr.Markdown("### ๐ก Recommendation")
|
|
|
|
| 263 |
recommendation_output = gr.Markdown(
|
| 264 |
value="โจ Select a category and merchant, then click 'Get Recommendation'",
|
| 265 |
elem_classes=["recommendation-output"]
|
| 266 |
)
|
| 267 |
+
|
| 268 |
def update_merchant_choices(category):
|
| 269 |
"""Update merchant dropdown based on selected category"""
|
| 270 |
merchants = MERCHANTS_BY_CATEGORY.get(category, ["Custom Merchant"])
|
|
|
|
| 272 |
choices=merchants,
|
| 273 |
value=merchants[0] if merchants else ""
|
| 274 |
)
|
| 275 |
+
|
| 276 |
# Connect category change to merchant update
|
| 277 |
category_dropdown.change(
|
| 278 |
fn=update_merchant_choices,
|
| 279 |
inputs=[category_dropdown],
|
| 280 |
outputs=[merchant_dropdown]
|
| 281 |
)
|
| 282 |
+
|
| 283 |
# Stats and comparison below
|
| 284 |
with gr.Row():
|
| 285 |
with gr.Column():
|
| 286 |
gr.Markdown("### ๐ Quick Stats")
|
| 287 |
stats_output = gr.Markdown()
|
| 288 |
+
|
| 289 |
with gr.Column():
|
| 290 |
gr.Markdown("### ๐ Card Comparison")
|
| 291 |
comparison_output = gr.Markdown()
|
| 292 |
+
|
| 293 |
# Connect button to function
|
| 294 |
recommend_btn.click(
|
| 295 |
fn=get_recommendation,
|
|
|
|
| 308 |
stats_output
|
| 309 |
]
|
| 310 |
)
|
| 311 |
+
|
| 312 |
# Examples
|
| 313 |
gr.Markdown("### ๐ Example Transactions")
|
| 314 |
gr.Examples(
|
|
|
|
| 330 |
fn=get_recommendation,
|
| 331 |
cache_examples=False
|
| 332 |
)
|
| 333 |
+
|
| 334 |
+
# ========== Tab 2: Analytics (NEW) ==========
|
| 335 |
+
with gr.Tab("๐ Analytics"):
|
| 336 |
+
gr.Markdown("## ๐ฏ Your Rewards Optimization Dashboard")
|
| 337 |
+
|
| 338 |
+
# Top Metrics Row
|
| 339 |
+
with gr.Row():
|
| 340 |
+
with gr.Column(scale=1):
|
| 341 |
+
gr.HTML("""
|
| 342 |
+
<div class="metric-card">
|
| 343 |
+
<h2>$342</h2>
|
| 344 |
+
<p>๐ฐ Potential Annual Savings</p>
|
| 345 |
+
</div>
|
| 346 |
+
""")
|
| 347 |
+
|
| 348 |
+
with gr.Column(scale=1):
|
| 349 |
+
gr.HTML("""
|
| 350 |
+
<div class="metric-card metric-card-green">
|
| 351 |
+
<h2>23%</h2>
|
| 352 |
+
<p>๐ Rewards Rate Increase</p>
|
| 353 |
+
</div>
|
| 354 |
+
""")
|
| 355 |
+
|
| 356 |
+
with gr.Column(scale=1):
|
| 357 |
+
gr.HTML("""
|
| 358 |
+
<div class="metric-card metric-card-orange">
|
| 359 |
+
<h2>156</h2>
|
| 360 |
+
<p>โ
Optimized Transactions</p>
|
| 361 |
+
</div>
|
| 362 |
+
""")
|
| 363 |
+
|
| 364 |
+
with gr.Column(scale=1):
|
| 365 |
+
gr.HTML("""
|
| 366 |
+
<div class="metric-card metric-card-blue">
|
| 367 |
+
<h2>87/100</h2>
|
| 368 |
+
<p>โญ Optimization Score</p>
|
| 369 |
+
</div>
|
| 370 |
+
""")
|
| 371 |
+
|
| 372 |
+
gr.Markdown("---")
|
| 373 |
+
|
| 374 |
+
# Detailed Analytics
|
| 375 |
+
with gr.Row():
|
| 376 |
+
with gr.Column(scale=1):
|
| 377 |
+
gr.Markdown("### ๐ฐ Category Spending Breakdown")
|
| 378 |
+
gr.Markdown("""
|
| 379 |
+
| Category | Monthly Spend | Best Card | Rewards | Rate |
|
| 380 |
+
|----------|---------------|-----------|---------|------|
|
| 381 |
+
| ๐ Groceries | $450.00 | Amex Gold | $27.00 | 6% |
|
| 382 |
+
| ๐ฝ๏ธ Restaurants | $320.00 | Amex Gold | $12.80 | 4% |
|
| 383 |
+
| โฝ Gas | $180.00 | Costco Visa | $7.20 | 4% |
|
| 384 |
+
| โ๏ธ Travel | $850.00 | Sapphire Reserve | $42.50 | 5% |
|
| 385 |
+
| ๐ฌ Entertainment | $125.00 | Freedom Unlimited | $1.88 | 1.5% |
|
| 386 |
+
| ๐ช Online Shopping | $280.00 | Amazon Prime | $16.80 | 6% |
|
| 387 |
+
| **Total** | **$2,205.00** | - | **$108.18** | **4.9%** |
|
| 388 |
+
""")
|
| 389 |
+
|
| 390 |
+
with gr.Column(scale=1):
|
| 391 |
+
gr.Markdown("### ๐ Monthly Trends & Insights")
|
| 392 |
+
|
| 393 |
+
gr.Markdown("""
|
| 394 |
+
**๐ฅ Top Spending Categories:**
|
| 395 |
+
1. โ๏ธ Travel: $850 (โ 45% from last month)
|
| 396 |
+
2. ๐ Groceries: $450 (โ 12%)
|
| 397 |
+
3. ๐ฝ๏ธ Restaurants: $320 (โ 5%)
|
| 398 |
+
|
| 399 |
+
**๐ก Optimization Opportunities:**
|
| 400 |
+
- โ
You're using optimal cards 87% of the time
|
| 401 |
+
- ๐ฏ Switch to Chase Freedom for Q4 5% grocery bonus
|
| 402 |
+
- โ ๏ธ Amex Gold dining cap approaching ($2,000 limit)
|
| 403 |
+
- ๐ณ Consider applying for Citi Custom Cash
|
| 404 |
+
|
| 405 |
+
**๐ Best Performing Card:**
|
| 406 |
+
Chase Sapphire Reserve - $42.50 rewards earned
|
| 407 |
+
|
| 408 |
+
**๐ Year-to-Date:**
|
| 409 |
+
- Total Rewards: $1,298.16
|
| 410 |
+
- Potential if optimized: $1,640.00
|
| 411 |
+
- **Money left on table: $341.84**
|
| 412 |
+
""")
|
| 413 |
+
|
| 414 |
+
gr.Markdown("---")
|
| 415 |
+
|
| 416 |
+
# Spending Forecast
|
| 417 |
+
with gr.Row():
|
| 418 |
+
gr.Markdown("""
|
| 419 |
+
### ๐ฎ Next Month Forecast
|
| 420 |
+
|
| 421 |
+
Based on your spending patterns:
|
| 422 |
+
- **Predicted Spend:** $2,350
|
| 423 |
+
- **Predicted Rewards:** $115.25
|
| 424 |
+
- **Cards to Watch:** Amex Gold (dining cap), Freedom (quarterly bonus)
|
| 425 |
+
|
| 426 |
+
**Recommendations:**
|
| 427 |
+
1. ๐ณ Use Chase Freedom for groceries in Q4 (5% back)
|
| 428 |
+
2. โ ๏ธ Monitor Amex Gold dining spend (cap at $2,000)
|
| 429 |
+
3. ๐ฏ Book holiday travel with Sapphire Reserve for 5x points
|
| 430 |
+
""")
|
| 431 |
+
|
| 432 |
+
# ========== Tab 3: About ==========
|
| 433 |
with gr.Tab("โน๏ธ About"):
|
| 434 |
gr.Markdown(
|
| 435 |
"""
|
| 436 |
## About RewardPilot
|
| 437 |
+
|
| 438 |
RewardPilot is an AI-powered credit card recommendation system built using the **Model Context Protocol (MCP)** architecture.
|
| 439 |
|
| 440 |
### ๐๏ธ Architecture
|
| 441 |
+
|
| 442 |
The system consists of multiple microservices:
|
| 443 |
+
|
| 444 |
1. **Smart Wallet** - Analyzes transaction context and selects optimal cards
|
| 445 |
2. **Rewards-RAG** - Retrieves detailed card benefit information using RAG
|
| 446 |
3. **Spend-Forecast** - Predicts spending patterns and warns about cap risks
|
| 447 |
4. **Orchestrator** - Coordinates all services for comprehensive recommendations
|
| 448 |
|
| 449 |
### ๐ฏ How It Works
|
| 450 |
+
|
| 451 |
1. **Enter Transaction Details** - Merchant, amount, category
|
| 452 |
2. **AI Analysis** - System analyzes your wallet and transaction context
|
| 453 |
3. **Get Recommendation** - Receive the best card with detailed reasoning
|
| 454 |
4. **Maximize Rewards** - Earn more points/cashback on every purchase
|
| 455 |
|
| 456 |
### ๐ง Technology Stack
|
| 457 |
+
|
| 458 |
- **Backend:** FastAPI, Python
|
| 459 |
- **Frontend:** Gradio
|
| 460 |
- **AI/ML:** RAG (Retrieval-Augmented Generation)
|
|
|
|
| 462 |
- **Deployment:** Hugging Face Spaces
|
| 463 |
|
| 464 |
### ๐ MCC Categories Supported
|
| 465 |
+
|
| 466 |
- Groceries (5411)
|
| 467 |
- Restaurants (5812)
|
| 468 |
- Gas Stations (5541)
|
|
|
|
| 472 |
- And many more...
|
| 473 |
|
| 474 |
### ๐ Built For
|
| 475 |
+
|
| 476 |
**MCP 1st Birthday Hackathon** - Celebrating one year of the Model Context Protocol
|
| 477 |
|
| 478 |
### ๐จโ๐ป Developer
|
| 479 |
+
|
| 480 |
Built with โค๏ธ for the MCP community
|
| 481 |
|
| 482 |
---
|
| 483 |
+
|
| 484 |
**Version:** 1.0.0
|
| 485 |
**Last Updated:** November 2025
|
| 486 |
"""
|
| 487 |
)
|
| 488 |
+
|
| 489 |
+
# ========== Tab 4: API Documentation ==========
|
| 490 |
with gr.Tab("๐ API Docs"):
|
| 491 |
gr.Markdown(
|
| 492 |
"""
|
| 493 |
## API Endpoints
|
| 494 |
|
| 495 |
### Orchestrator API
|
| 496 |
+
|
| 497 |
**Base URL:** `https://mcp-1st-birthday-rewardpilot-orchestrator.hf.space`
|
| 498 |
|
| 499 |
#### POST `/recommend`
|
| 500 |
+
|
| 501 |
Get comprehensive card recommendation.
|
| 502 |
|
| 503 |
**Request:**
|
|
|
|
| 534 |
```
|
| 535 |
|
| 536 |
### Other Services
|
| 537 |
+
|
| 538 |
- Smart Wallet: https://mcp-1st-birthday-rewardpilot-smart-wallet.hf.space
|
| 539 |
- Rewards-RAG: https://mcp-1st-birthday-rewardpilot-rewards-rag.hf.space
|
| 540 |
- Spend-Forecast: https://mcp-1st-birthday-rewardpilot-spend-forecast.hf.space
|
| 541 |
|
| 542 |
### Interactive Docs
|
| 543 |
+
|
| 544 |
Visit `/docs` on any service for interactive Swagger UI documentation.
|
| 545 |
|
| 546 |
### cURL Examples
|
| 547 |
+
|
| 548 |
```bash
|
| 549 |
# Get recommendation
|
| 550 |
+
curl -X POST https://mcp-1st-birthday-rewardpilot-orchestrator.hf.space/recommend \\
|
| 551 |
+
-H "Content-Type: application/json" \\
|
| 552 |
-d '{
|
| 553 |
"user_id": "u_alice",
|
| 554 |
"merchant": "Whole Foods",
|