File size: 24,227 Bytes
d919708
1b86d8a
 
2ee9112
87b09dd
1b86d8a
 
 
d919708
87b09dd
1b86d8a
 
fa42c97
87b09dd
 
 
d919708
 
87b09dd
d919708
87b09dd
d919708
87b09dd
 
 
 
2ee9112
87b09dd
 
 
41c40b7
7fa30a6
87b09dd
 
 
7fa30a6
 
 
1b86d8a
 
87b09dd
 
 
 
 
 
 
 
 
 
 
 
fa42c97
 
 
 
d919708
87b09dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d919708
fa42c97
d919708
87b09dd
 
 
 
 
 
 
 
 
d919708
7fa30a6
d919708
 
 
 
 
 
 
 
 
 
 
 
1b86d8a
 
 
7372212
1b86d8a
 
87b09dd
 
1b86d8a
87b09dd
 
 
 
 
 
 
 
 
 
 
 
1b86d8a
87b09dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d919708
 
 
 
87b09dd
d919708
 
 
87b09dd
d919708
7fa30a6
bb3c951
d919708
bb3c951
87b09dd
 
 
 
 
bb3c951
87b09dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d919708
 
f841fdd
1b86d8a
 
 
7372212
1b86d8a
 
87b09dd
 
1b86d8a
87b09dd
 
 
 
 
 
 
 
 
 
 
 
1b86d8a
87b09dd
 
 
 
 
 
 
 
f841fdd
 
7fa30a6
f841fdd
 
 
 
 
 
87b09dd
f841fdd
 
bb3c951
7fa30a6
87b09dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f841fdd
 
 
1b86d8a
 
 
7372212
1b86d8a
 
 
87b09dd
 
f841fdd
7fa30a6
bb3c951
f841fdd
 
 
1b86d8a
f841fdd
 
87b09dd
7fa30a6
bb3c951
f841fdd
87b09dd
 
 
 
 
f841fdd
 
d919708
1b86d8a
 
 
7372212
1b86d8a
 
 
87b09dd
 
d919708
 
 
bb3c951
d919708
87b09dd
 
 
 
 
 
bb3c951
d919708
 
 
87b09dd
d919708
 
87b09dd
7fa30a6
bb3c951
 
 
87b09dd
 
 
 
 
bb3c951
87b09dd
 
 
 
 
d919708
 
 
1b86d8a
 
 
7372212
1b86d8a
 
 
87b09dd
 
d919708
bb3c951
87b09dd
 
 
 
 
 
bb3c951
d919708
 
 
87b09dd
d919708
 
87b09dd
7fa30a6
bb3c951
 
 
87b09dd
 
 
 
 
bb3c951
87b09dd
 
 
 
 
d919708
 
f841fdd
1b86d8a
 
 
 
7372212
1b86d8a
 
 
87b09dd
 
 
 
 
 
 
 
 
 
 
 
1b86d8a
87b09dd
 
 
 
 
 
 
 
 
 
2ee9112
87b09dd
 
 
 
bb3c951
f841fdd
 
2ee9112
87b09dd
f841fdd
 
87b09dd
2ee9112
 
bb3c951
 
 
87b09dd
 
 
 
 
bb3c951
87b09dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f841fdd
 
d919708
 
 
 
 
 
 
 
 
 
 
 
87b09dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import os
import uuid
from fastapi import APIRouter, Depends, HTTPException, Request, status, UploadFile, File
from fastapi.responses import StreamingResponse
from api.models import QueryRequest, User, Conversation, Message, ConversationOut, ConversationCreate, UserUpdate
from api.auth import current_active_user
from api.database import get_db
from sqlalchemy.orm import Session
from utils.generation import request_generation, select_model
from utils.web_search import web_search
import io
from openai import OpenAI
from motor.motor_asyncio import AsyncIOMotorClient
from datetime import datetime
import logging
from typing import List

router = APIRouter()
logger = logging.getLogger(__name__)

# Check HF_TOKEN and BACKUP_HF_TOKEN
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    logger.error("HF_TOKEN is not set in environment variables.")
    raise ValueError("HF_TOKEN is required for Inference API.")

BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
if not BACKUP_HF_TOKEN:
    logger.warning("BACKUP_HF_TOKEN is not set. Fallback to secondary model will not work if primary token fails.")

API_ENDPOINT = os.getenv("API_ENDPOINT", "https://router.huggingface.co/v1")
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b")
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mistral-7B-Instruct-v0.2")
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "openai/gpt-oss-20b")
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14")
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
TTS_MODEL = os.getenv("TTS_MODEL", "facebook/mms-tts-ara")

# Model alias mapping for user-friendly names
MODEL_ALIASES = {
    "advanced": MODEL_NAME,
    "standard": SECONDARY_MODEL_NAME,
    "light": TERTIARY_MODEL_NAME,
    "image_base": CLIP_BASE_MODEL,
    "image_advanced": CLIP_LARGE_MODEL,
    "audio": ASR_MODEL,
    "tts": TTS_MODEL
}

# MongoDB setup
MONGO_URI = os.getenv("MONGODB_URI")
client = AsyncIOMotorClient(MONGO_URI)
db = client["hager"]
session_message_counts = db["session_message_counts"]

# Helper function to handle sessions for non-logged-in users
async def handle_session(request: Request):
    if not hasattr(request, "session"):
        raise HTTPException(status_code=500, detail="Session middleware not configured")
    session_id = request.session.get("session_id")
    if not session_id:
        session_id = str(uuid.uuid4())
        request.session["session_id"] = session_id
        await session_message_counts.insert_one({"session_id": session_id, "message_count": 0})
    
    session_doc = await session_message_counts.find_one({"session_id": session_id})
    if not session_doc:
        session_doc = {"session_id": session_id, "message_count": 0}
        await session_message_counts.insert_one(session_doc)
    
    message_count = session_doc["message_count"] + 1
    await session_message_counts.update_one(
        {"session_id": session_id},
        {"$set": {"message_count": message_count}}
    )
    if message_count > 4:
        raise HTTPException(
            status_code=status.HTTP_403_FORBIDDEN,
            detail="Message limit reached. Please log in to continue."
        )
    return session_id

@router.get("/api/settings")
async def get_settings(user: User = Depends(current_active_user)):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    return {
        "available_models": [
            {"alias": "advanced", "description": "High-performance model for complex queries"},
            {"alias": "standard", "description": "Balanced model for general use"},
            {"alias": "light", "description": "Lightweight model for quick responses"}
        ],
        "conversation_styles": ["default", "concise", "analytical", "creative"],
        "user_settings": {
            "display_name": user.display_name,
            "preferred_model": user.preferred_model,
            "job_title": user.job_title,
            "education": user.education,
            "interests": user.interests,
            "additional_info": user.additional_info,
            "conversation_style": user.conversation_style
        }
    }

@router.get("/api/model-info")
async def model_info():
    return {
        "available_models": [
            {"alias": "advanced", "description": "High-performance model for complex queries"},
            {"alias": "standard", "description": "Balanced model for general use"},
            {"alias": "light", "description": "Lightweight model for quick responses"},
            {"alias": "image_base", "description": "Basic image analysis model"},
            {"alias": "image_advanced", "description": "Advanced image analysis model"},
            {"alias": "audio", "description": "Audio transcription model (default)"},
            {"alias": "tts", "description": "Text-to-speech model (default)"}
        ],
        "api_base": API_ENDPOINT,
        "fallback_api_base": FALLBACK_API_ENDPOINT,
        "status": "online"
    }

@router.get("/api/performance")
async def performance_stats():
    return {
        "queue_size": int(os.getenv("QUEUE_SIZE", 80)),
        "concurrency_limit": int(os.getenv("CONCURRENCY_LIMIT", 20)),
        "uptime": os.popen("uptime").read().strip()
    }

@router.post("/api/chat")
async def chat_endpoint(
    request: Request,
    req: QueryRequest,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    logger.info(f"Received chat request: {req}")
    
    if not user:
        await handle_session(request)
    
    conversation = None
    if user:
        title = req.title or (req.message[:50] + "..." if len(req.message) > 50 else req.message or "Untitled Conversation")
        conversation = db.query(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.updated_at.desc()).first()
        if not conversation:
            conversation_id = str(uuid.uuid4())
            conversation = Conversation(
                conversation_id=conversation_id,
                user_id=user.id,
                title=title
            )
            db.add(conversation)
            db.commit()
            db.refresh(conversation)
        
        user_msg = Message(role="user", content=req.message, conversation_id=conversation.id)
        db.add(user_msg)
        db.commit()
    
    # Use user's preferred model if set
    preferred_model = user.preferred_model if user else None
    model_name, api_endpoint = select_model(req.message, input_type="text", preferred_model=preferred_model)
    system_prompt = req.system_prompt
    if user and user.additional_info:
        system_prompt = f"{system_prompt}\nUser Profile: {user.additional_info}\nConversation Style: {user.conversation_style or 'default'}"
    
    stream = request_generation(
        api_key=HF_TOKEN,
        api_base=api_endpoint,
        message=req.message,
        system_prompt=system_prompt,
        model_name=model_name,
        chat_history=req.history,
        temperature=req.temperature,
        max_new_tokens=req.max_new_tokens or 2048,
        deep_search=req.enable_browsing,
        input_type="text",
        output_format=req.output_format
    )
    if req.output_format == "audio":
        audio_chunks = []
        async for chunk in stream:
            if isinstance(chunk, bytes):
                audio_chunks.append(chunk)
        audio_data = b"".join(audio_chunks)
        return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
    response_chunks = []
    async for chunk in stream:
        if isinstance(chunk, str):
            response_chunks.append(chunk)
    response = "".join(response_chunks)
    logger.info(f"Chat response: {response}")
    
    if user and conversation:
        assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
        db.add(assistant_msg)
        db.commit()
        conversation.updated_at = datetime.utcnow()
        db.commit()
        return {
            "response": response,
            "conversation_id": conversation.conversation_id,
            "conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
            "conversation_title": conversation.title
        }
    
    return {"response": response}

@router.post("/api/audio-transcription")
async def audio_transcription_endpoint(
    request: Request,
    file: UploadFile = File(...),
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    logger.info(f"Received audio transcription request for file: {file.filename}")
    
    if not user:
        await handle_session(request)
    
    conversation = None
    if user:
        title = "Audio Transcription"
        conversation = db.query(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.updated_at.desc()).first()
        if not conversation:
            conversation_id = str(uuid.uuid4())
            conversation = Conversation(
                conversation_id=conversation_id,
                user_id=user.id,
                title=title
            )
            db.add(conversation)
            db.commit()
            db.refresh(conversation)
        
        user_msg = Message(role="user", content="Audio message", conversation_id=conversation.id)
        db.add(user_msg)
        db.commit()
    
    model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
    audio_data = await file.read()
    stream = request_generation(
        api_key=HF_TOKEN,
        api_base=api_endpoint,
        message="Transcribe audio",
        system_prompt="Transcribe the provided audio using Whisper.",
        model_name=model_name,
        temperature=0.7,
        max_new_tokens=2048,
        input_type="audio",
        audio_data=audio_data,
        output_format="text"
    )
    response_chunks = []
    async for chunk in stream:
        if isinstance(chunk, str):
            response_chunks.append(chunk)
    response = "".join(response_chunks)
    logger.info(f"Audio transcription response: {response}")
    
    if user and conversation:
        assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
        db.add(assistant_msg)
        db.commit()
        conversation.updated_at = datetime.utcnow()
        db.commit()
        return {
            "transcription": response,
            "conversation_id": conversation.conversation_id,
            "conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
            "conversation_title": conversation.title
        }
    
    return {"transcription": response}

@router.post("/api/text-to-speech")
async def text_to_speech_endpoint(
    request: Request,
    req: dict,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        await handle_session(request)
    
    text = req.get("text", "")
    model_name, api_endpoint = select_model("text to speech", input_type="tts")
    stream = request_generation(
        api_key=HF_TOKEN,
        api_base=api_endpoint,
        message=text,
        system_prompt="Convert the provided text to speech using a text-to-speech model.",
        model_name=model_name,
        temperature=0.7,
        max_new_tokens=2048,
        input_type="tts",
        output_format="audio"
    )
    audio_chunks = []
    async for chunk in stream:
        if isinstance(chunk, bytes):
            audio_chunks.append(chunk)
    audio_data = b"".join(audio_chunks)
    return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")

@router.post("/api/code")
async def code_endpoint(
    request: Request,
    req: dict,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        await handle_session(request)
    
    framework = req.get("framework")
    task = req.get("task")
    code = req.get("code", "")
    output_format = req.get("output_format", "text")
    prompt = f"Generate code for task: {task} using {framework}. Existing code: {code}"
    preferred_model = user.preferred_model if user else None
    model_name, api_endpoint = select_model(prompt, input_type="text", preferred_model=preferred_model)
    system_prompt = "You are a coding expert. Provide detailed, well-commented code with examples and explanations."
    if user and user.additional_info:
        system_prompt = f"{system_prompt}\nUser Profile: {user.additional_info}\nConversation Style: {user.conversation_style or 'default'}"
    
    stream = request_generation(
        api_key=HF_TOKEN,
        api_base=api_endpoint,
        message=prompt,
        system_prompt=system_prompt,
        model_name=model_name,
        temperature=0.7,
        max_new_tokens=2048,
        input_type="text",
        output_format=output_format
    )
    if output_format == "audio":
        audio_chunks = []
        async for chunk in stream:
            if isinstance(chunk, bytes):
                audio_chunks.append(chunk)
        audio_data = b"".join(audio_chunks)
        return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
    response_chunks = []
    async for chunk in stream:
        if isinstance(chunk, str):
            response_chunks.append(chunk)
    response = "".join(response_chunks)
    return {"generated_code": response}

@router.post("/api/analysis")
async def analysis_endpoint(
    request: Request,
    req: dict,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        await handle_session(request)
    
    message = req.get("text", "")
    output_format = req.get("output_format", "text")
    preferred_model = user.preferred_model if user else None
    model_name, api_endpoint = select_model(message, input_type="text", preferred_model=preferred_model)
    system_prompt = "You are an expert analyst. Provide detailed analysis with step-by-step reasoning and examples."
    if user and user.additional_info:
        system_prompt = f"{system_prompt}\nUser Profile: {user.additional_info}\nConversation Style: {user.conversation_style or 'default'}"
    
    stream = request_generation(
        api_key=HF_TOKEN,
        api_base=api_endpoint,
        message=message,
        system_prompt=system_prompt,
        model_name=model_name,
        temperature=0.7,
        max_new_tokens=2048,
        input_type="text",
        output_format=output_format
    )
    if output_format == "audio":
        audio_chunks = []
        async for chunk in stream:
            if isinstance(chunk, bytes):
                audio_chunks.append(chunk)
        audio_data = b"".join(audio_chunks)
        return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
    response_chunks = []
    async for chunk in stream:
        if isinstance(chunk, str):
            response_chunks.append(chunk)
    response = "".join(response_chunks)
    return {"analysis": response}

@router.post("/api/image-analysis")
async def image_analysis_endpoint(
    request: Request,
    file: UploadFile = File(...),
    output_format: str = "text",
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        await handle_session(request)
    
    conversation = None
    if user:
        title = "Image Analysis"
        conversation = db.query(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.updated_at.desc()).first()
        if not conversation:
            conversation_id = str(uuid.uuid4())
            conversation = Conversation(
                conversation_id=conversation_id,
                user_id=user.id,
                title=title
            )
            db.add(conversation)
            db.commit()
            db.refresh(conversation)
        
        user_msg = Message(role="user", content="Image analysis request", conversation_id=conversation.id)
        db.add(user_msg)
        db.commit()
    
    preferred_model = user.preferred_model if user else None
    model_name, api_endpoint = select_model("analyze image", input_type="image", preferred_model=preferred_model)
    image_data = await file.read()
    system_prompt = "You are an expert in image analysis. Provide detailed descriptions or classifications based on the query."
    if user and user.additional_info:
        system_prompt = f"{system_prompt}\nUser Profile: {user.additional_info}\nConversation Style: {user.conversation_style or 'default'}"
    
    stream = request_generation(
        api_key=HF_TOKEN,
        api_base=api_endpoint,
        message="Analyze this image",
        system_prompt=system_prompt,
        model_name=model_name,
        temperature=0.7,
        max_new_tokens=2048,
        input_type="image",
        image_data=image_data,
        output_format=output_format
    )
    if output_format == "audio":
        audio_chunks = []
        async for chunk in stream:
            if isinstance(chunk, bytes):
                audio_chunks.append(chunk)
        audio_data = b"".join(audio_chunks)
        return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
    response_chunks = []
    async for chunk in stream:
        if isinstance(chunk, str):
            response_chunks.append(chunk)
    response = "".join(response_chunks)
    
    if user and conversation:
        assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
        db.add(assistant_msg)
        db.commit()
        conversation.updated_at = datetime.utcnow()
        db.commit()
        return {
            "image_analysis": response,
            "conversation_id": conversation.conversation_id,
            "conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
            "conversation_title": conversation.title
        }
    
    return {"image_analysis": response}

@router.get("/api/test-model")
async def test_model(model: str = MODEL_NAME, endpoint: str = API_ENDPOINT):
    try:
        client = OpenAI(api_key=HF_TOKEN, base_url=endpoint, timeout=60.0)
        response = client.chat.completions.create(
            model=model,
            messages=[{"role": "user", "content": "Test"}],
            max_tokens=50
        )
        return {"status": "success", "response": response.choices[0].message.content}
    except Exception as e:
        return {"status": "error", "message": str(e)}

@router.post("/api/conversations", response_model=ConversationOut)
async def create_conversation(
    req: ConversationCreate,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    conversation_id = str(uuid.uuid4())
    conversation = Conversation(
        conversation_id=conversation_id,
        title=req.title or "Untitled Conversation",
        user_id=user.id
    )
    db.add(conversation)
    db.commit()
    db.refresh(conversation)
    return ConversationOut.from_orm(conversation)

@router.get("/api/conversations/{conversation_id}", response_model=ConversationOut)
async def get_conversation(
    conversation_id: str,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    conversation = db.query(Conversation).filter(
        Conversation.conversation_id == conversation_id,
        Conversation.user_id == user.id
    ).first()
    if not conversation:
        raise HTTPException(status_code=404, detail="Conversation not found")
    db.add(conversation)
    db.commit()
    return ConversationOut.from_orm(conversation)

@router.get("/api/conversations", response_model=List[ConversationOut])
async def list_conversations(
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    conversations = db.query(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.created_at.desc()).all()
    return conversations

@router.put("/api/conversations/{conversation_id}/title")
async def update_conversation_title(
    conversation_id: str,
    title: str,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    conversation = db.query(Conversation).filter(
        Conversation.conversation_id == conversation_id,
        Conversation.user_id == user.id
    ).first()
    if not conversation:
        raise HTTPException(status_code=404, detail="Conversation not found")
    
    conversation.title = title
    conversation.updated_at = datetime.utcnow()
    db.commit()
    return {"message": "Conversation title updated", "title": conversation.title}

@router.delete("/api/conversations/{conversation_id}")
async def delete_conversation(
    conversation_id: str,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    conversation = db.query(Conversation).filter(
        Conversation.conversation_id == conversation_id,
        Conversation.user_id == user.id
    ).first()
    if not conversation:
        raise HTTPException(status_code=404, detail="Conversation not found")
    
    db.query(Message).filter(Message.conversation_id == conversation.id).delete()
    db.delete(conversation)
    db.commit()
    return {"message": "Conversation deleted successfully"}

@router.get("/users/me")
async def get_user_settings(user: User = Depends(current_active_user)):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    return {
        "id": user.id,
        "email": user.email,
        "display_name": user.display_name,
        "preferred_model": user.preferred_model,
        "job_title": user.job_title,
        "education": user.education,
        "interests": user.interests,
        "additional_info": user.additional_info,
        "conversation_style": user.conversation_style,
        "is_active": user.is_active,
        "is_superuser": user.is_superuser
    }

@router.put("/users/me")
async def update_user_settings(
    settings: UserUpdate,
    user: User = Depends(current_active_user),
    db: Session = Depends(get_db)
):
    if not user:
        raise HTTPException(status_code=401, detail="Login required")
    
    # Validate preferred_model
    if settings.preferred_model and settings.preferred_model not in MODEL_ALIASES:
        raise HTTPException(status_code=400, detail="Invalid model alias")
    
    # Update user settings
    if settings.display_name is not None:
        user.display_name = settings.display_name
    if settings.preferred_model is not None:
        user.preferred_model = settings.preferred_model
    if settings.job_title is not None:
        user.job_title = settings.job_title
    if settings.education is not None:
        user.education = settings.education
    if settings.interests is not None:
        user.interests = settings.interests
    if settings.additional_info is not None:
        user.additional_info = settings.additional_info
    if settings.conversation_style is not None:
        user.conversation_style = settings.conversation_style
    
    db.commit()
    db.refresh(user)
    return {"message": "Settings updated successfully", "user": {
        "id": user.id,
        "email": user.email,
        "display_name": user.display_name,
        "preferred_model": user.preferred_model,
        "job_title": user.job_title,
        "education": user.education,
        "interests": user.interests,
        "additional_info": user.additional_info,
        "conversation_style": user.conversation_style,
        "is_active": user.is_active,
        "is_superuser": user.is_superuser
    }}