Commit
·
379310a
1
Parent(s):
d8b507b
Shorten short_description to meet Hugging Face metadata requirements
Browse files
main.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import logging
|
| 3 |
from fastapi import FastAPI, Request
|
| 4 |
from fastapi.responses import HTMLResponse, RedirectResponse
|
|
@@ -7,80 +8,34 @@ from fastapi.templating import Jinja2Templates
|
|
| 7 |
from starlette.middleware.base import BaseHTTPMiddleware
|
| 8 |
from fastapi.openapi.docs import get_swagger_ui_html
|
| 9 |
import gradio as gr
|
| 10 |
-
from api.endpoints import router as api_router
|
| 11 |
-
from utils.generation import generate, LATEX_DELIMS
|
| 12 |
|
|
|
|
| 13 |
from utils.generation import generate, LATEX_DELIMS
|
| 14 |
|
| 15 |
-
# إعداد
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
# تحقق من الملفات في /app/
|
| 20 |
logger.info("Files in /app/: %s", os.listdir("/app"))
|
| 21 |
|
| 22 |
-
#
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
-
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
| 25 |
if not HF_TOKEN:
|
| 26 |
logger.error("HF_TOKEN is not set in environment variables.")
|
| 27 |
raise ValueError("HF_TOKEN is required for Inference API.")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
QUEUE_SIZE = int(os.getenv("QUEUE_SIZE", 80))
|
| 31 |
CONCURRENCY_LIMIT = int(os.getenv("CONCURRENCY_LIMIT", 20))
|
| 32 |
|
| 33 |
-
#
|
| 34 |
css = """
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
.input-textbox { font-size: 16px; padding: 10px; }
|
| 38 |
-
.upload-button::before {
|
| 39 |
-
content: '📷';
|
| 40 |
-
margin-right: 8px;
|
| 41 |
-
font-size: 22px;
|
| 42 |
-
}
|
| 43 |
-
.audio-input::before {
|
| 44 |
-
content: '🎤';
|
| 45 |
-
margin-right: 8px;
|
| 46 |
-
font-size: 22px;
|
| 47 |
-
}
|
| 48 |
-
.audio-output::before {
|
| 49 |
-
content: '🔊';
|
| 50 |
-
margin-right: 8px;
|
| 51 |
-
font-size: 22px;
|
| 52 |
-
}
|
| 53 |
-
.loading::after {
|
| 54 |
-
content: '';
|
| 55 |
-
display: inline-block;
|
| 56 |
-
width: 16px;
|
| 57 |
-
height: 16px;
|
| 58 |
-
border: 2px solid #333;
|
| 59 |
-
border-top-color: transparent;
|
| 60 |
-
border-radius: 50%;
|
| 61 |
-
animation: spin 1s linear infinite;
|
| 62 |
-
margin-left: 8px;
|
| 63 |
-
}
|
| 64 |
-
@keyframes spin {
|
| 65 |
-
to { transform: rotate(360deg); }
|
| 66 |
-
}
|
| 67 |
-
.output-container {
|
| 68 |
-
margin-top: 20px;
|
| 69 |
-
padding: 10px;
|
| 70 |
-
border: 1px solid #ddd;
|
| 71 |
-
border-radius: 8px;
|
| 72 |
-
}
|
| 73 |
-
.audio-output-container {
|
| 74 |
-
display: flex;
|
| 75 |
-
align-items: center;
|
| 76 |
-
gap: 10px;
|
| 77 |
-
margin-top: 10px;
|
| 78 |
-
}
|
| 79 |
"""
|
| 80 |
|
| 81 |
-
# دالة
|
| 82 |
-
|
| 83 |
-
# === دالة المعالجة ===
|
| 84 |
def process_input(message, history, audio_input=None, file_input=None):
|
| 85 |
input_type = "text"
|
| 86 |
audio_data, image_data = None, None
|
|
@@ -102,31 +57,30 @@ def process_input(message, history, audio_input=None, file_input=None):
|
|
| 102 |
message = f"Analyze file: {file_input}"
|
| 103 |
|
| 104 |
response_text, audio_response = "", None
|
| 105 |
-
for chunk in generate(
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
audio_response = io.BytesIO(chunk)
|
| 111 |
audio_response.name = "reply.wav"
|
| 112 |
-
else:
|
| 113 |
response_text += chunk
|
| 114 |
|
| 115 |
yield response_text, audio_response
|
| 116 |
|
| 117 |
-
#
|
| 118 |
-
with gr.Blocks(css=""
|
| 119 |
-
|
| 120 |
-
#msg-box {flex:1;}
|
| 121 |
-
""") as demo:
|
| 122 |
-
chatbot = gr.Chatbot(label="MGZon Chatbot", height=700,
|
| 123 |
-
latex_delimiters=LATEX_DELIMS)
|
| 124 |
state = gr.State([])
|
| 125 |
|
| 126 |
with gr.Row(elem_id="input-row"):
|
| 127 |
msg = gr.Textbox(placeholder="Type your message...", elem_id="msg-box")
|
| 128 |
-
mic = gr.Audio(sources=["microphone"], type="filepath", label="", elem_classes="audio-input")
|
| 129 |
-
file = gr.File(file_types=["image", ".pdf", ".txt"], label="", elem_classes="upload-button")
|
| 130 |
send_btn = gr.Button("Send")
|
| 131 |
|
| 132 |
voice_reply = gr.Audio(label="🔊 Voice Reply", type="filepath", autoplay=True)
|
|
@@ -142,59 +96,17 @@ with gr.Blocks(css="""
|
|
| 142 |
process_input, [msg, state, mic, file], [chatbot, voice_reply]
|
| 143 |
)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
# إعداد واجهة Gradio
|
| 150 |
-
chatbot_ui = gr.ChatInterface(
|
| 151 |
-
fn=process_input,
|
| 152 |
-
chatbot=gr.Chatbot(
|
| 153 |
-
label="MGZon Chatbot",
|
| 154 |
-
height=800,
|
| 155 |
-
latex_delimiters=LATEX_DELIMS,
|
| 156 |
-
),
|
| 157 |
-
additional_inputs_accordion=gr.Accordion("⚙️ Settings", open=True),
|
| 158 |
-
additional_inputs=[
|
| 159 |
-
gr.Textbox(
|
| 160 |
-
label="System Prompt",
|
| 161 |
-
value="You are an expert assistant providing detailed, comprehensive, and well-structured responses. Support text, audio, image, and file inputs. For audio, transcribe using Whisper. For text-to-speech, use Parler-TTS. For images and files, analyze content appropriately. Continue generating content until the query is fully addressed, leveraging the full capacity of the model.",
|
| 162 |
-
lines=4
|
| 163 |
-
),
|
| 164 |
-
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.7),
|
| 165 |
-
gr.Radio(label="Reasoning Effort", choices=["low", "medium", "high"], value="medium"),
|
| 166 |
-
gr.Checkbox(label="Enable DeepSearch (web browsing)", value=True),
|
| 167 |
-
gr.Slider(label="Max New Tokens", minimum=50, maximum=128000, step=50, value=128000),
|
| 168 |
-
gr.Audio(label="Voice Input", type="filepath", elem_classes="audio-input"),
|
| 169 |
-
gr.File(label="Upload Image/File", file_types=["image", ".pdf", ".txt"], elem_classes="upload-button"),
|
| 170 |
-
],
|
| 171 |
-
additional_outputs=[gr.Audio(label="Voice Output", type="filepath", elem_classes="audio-output", autoplay=True)],
|
| 172 |
-
stop_btn="Stop",
|
| 173 |
-
examples=[
|
| 174 |
-
["Explain the difference between supervised and unsupervised learning in detail with examples."],
|
| 175 |
-
["Generate a complete React component for a login form with form validation and error handling."],
|
| 176 |
-
["Describe this image: https://example.com/image.jpg"],
|
| 177 |
-
["Transcribe this audio: [upload audio file]."],
|
| 178 |
-
["Convert this text to speech: Hello, welcome to MGZon!"],
|
| 179 |
-
["Analyze this file: [upload PDF or text file]."],
|
| 180 |
-
],
|
| 181 |
-
title="MGZon Chatbot",
|
| 182 |
-
description="A versatile chatbot powered by DeepSeek, CLIP, Whisper, and Parler-TTS for text, image, audio, and file queries. Supports long responses, voice input/output, file uploads with custom icons, and backup token switching. Licensed under Apache 2.0.",
|
| 183 |
-
theme="gradio/soft",
|
| 184 |
-
css=css,
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
# إعداد FastAPI
|
| 188 |
app = FastAPI(title="MGZon Chatbot API")
|
| 189 |
|
| 190 |
-
# ربط Gradio
|
| 191 |
app = gr.mount_gradio_app(app, chatbot_ui, path="/gradio")
|
| 192 |
|
| 193 |
-
#
|
| 194 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 195 |
templates = Jinja2Templates(directory="templates")
|
| 196 |
|
| 197 |
-
# Middleware
|
| 198 |
class NotFoundMiddleware(BaseHTTPMiddleware):
|
| 199 |
async def dispatch(self, request: Request, call_next):
|
| 200 |
try:
|
|
@@ -209,27 +121,28 @@ class NotFoundMiddleware(BaseHTTPMiddleware):
|
|
| 209 |
|
| 210 |
app.add_middleware(NotFoundMiddleware)
|
| 211 |
|
| 212 |
-
# Root
|
| 213 |
@app.get("/", response_class=HTMLResponse)
|
| 214 |
async def root(request: Request):
|
| 215 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 216 |
|
| 217 |
-
# Docs
|
| 218 |
@app.get("/docs", response_class=HTMLResponse)
|
| 219 |
async def docs(request: Request):
|
| 220 |
return templates.TemplateResponse("docs.html", {"request": request})
|
| 221 |
|
| 222 |
-
# Swagger
|
| 223 |
@app.get("/swagger", response_class=HTMLResponse)
|
| 224 |
async def swagger_ui():
|
| 225 |
return get_swagger_ui_html(openapi_url="/openapi.json", title="MGZon API Documentation")
|
| 226 |
|
| 227 |
-
# Redirect
|
| 228 |
@app.get("/launch-chatbot", response_class=RedirectResponse)
|
| 229 |
async def launch_chatbot():
|
| 230 |
return RedirectResponse(url="/gradio", status_code=302)
|
| 231 |
|
| 232 |
-
#
|
| 233 |
if __name__ == "__main__":
|
| 234 |
import uvicorn
|
| 235 |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import io
|
| 3 |
import logging
|
| 4 |
from fastapi import FastAPI, Request
|
| 5 |
from fastapi.responses import HTMLResponse, RedirectResponse
|
|
|
|
| 8 |
from starlette.middleware.base import BaseHTTPMiddleware
|
| 9 |
from fastapi.openapi.docs import get_swagger_ui_html
|
| 10 |
import gradio as gr
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
from api.endpoints import router as api_router
|
| 13 |
from utils.generation import generate, LATEX_DELIMS
|
| 14 |
|
| 15 |
+
# ================= إعداد اللوج =================
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
|
|
|
| 19 |
logger.info("Files in /app/: %s", os.listdir("/app"))
|
| 20 |
|
| 21 |
+
# ================= مفاتيح HuggingFace =================
|
| 22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 23 |
+
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
| 24 |
if not HF_TOKEN:
|
| 25 |
logger.error("HF_TOKEN is not set in environment variables.")
|
| 26 |
raise ValueError("HF_TOKEN is required for Inference API.")
|
| 27 |
|
| 28 |
+
# ================= إعداد Queue =================
|
| 29 |
QUEUE_SIZE = int(os.getenv("QUEUE_SIZE", 80))
|
| 30 |
CONCURRENCY_LIMIT = int(os.getenv("CONCURRENCY_LIMIT", 20))
|
| 31 |
|
| 32 |
+
# ================= CSS =================
|
| 33 |
css = """
|
| 34 |
+
#input-row {display:flex; gap:6px; align-items:center;}
|
| 35 |
+
#msg-box {flex:1;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
"""
|
| 37 |
|
| 38 |
+
# ================= دالة المعالجة =================
|
|
|
|
|
|
|
| 39 |
def process_input(message, history, audio_input=None, file_input=None):
|
| 40 |
input_type = "text"
|
| 41 |
audio_data, image_data = None, None
|
|
|
|
| 57 |
message = f"Analyze file: {file_input}"
|
| 58 |
|
| 59 |
response_text, audio_response = "", None
|
| 60 |
+
for chunk in generate(
|
| 61 |
+
message=message,
|
| 62 |
+
history=history,
|
| 63 |
+
input_type=input_type,
|
| 64 |
+
audio_data=audio_data,
|
| 65 |
+
image_data=image_data
|
| 66 |
+
):
|
| 67 |
+
if isinstance(chunk, bytes): # 🔊 صوت
|
| 68 |
audio_response = io.BytesIO(chunk)
|
| 69 |
audio_response.name = "reply.wav"
|
| 70 |
+
else: # 📝 نص
|
| 71 |
response_text += chunk
|
| 72 |
|
| 73 |
yield response_text, audio_response
|
| 74 |
|
| 75 |
+
# ================= واجهة Gradio =================
|
| 76 |
+
with gr.Blocks(css=css, theme="gradio/soft") as chatbot_ui:
|
| 77 |
+
chatbot = gr.Chatbot(label="MGZon Chatbot", height=700, latex_delimiters=LATEX_DELIMS)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
state = gr.State([])
|
| 79 |
|
| 80 |
with gr.Row(elem_id="input-row"):
|
| 81 |
msg = gr.Textbox(placeholder="Type your message...", elem_id="msg-box")
|
| 82 |
+
mic = gr.Audio(sources=["microphone"], type="filepath", label="🎤", elem_classes="audio-input")
|
| 83 |
+
file = gr.File(file_types=["image", ".pdf", ".txt"], label="📎", elem_classes="upload-button")
|
| 84 |
send_btn = gr.Button("Send")
|
| 85 |
|
| 86 |
voice_reply = gr.Audio(label="🔊 Voice Reply", type="filepath", autoplay=True)
|
|
|
|
| 96 |
process_input, [msg, state, mic, file], [chatbot, voice_reply]
|
| 97 |
)
|
| 98 |
|
| 99 |
+
# ================= FastAPI =================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
app = FastAPI(title="MGZon Chatbot API")
|
| 101 |
|
| 102 |
+
# ربط Gradio داخل FastAPI
|
| 103 |
app = gr.mount_gradio_app(app, chatbot_ui, path="/gradio")
|
| 104 |
|
| 105 |
+
# ملفات ثابتة + قوالب
|
| 106 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 107 |
templates = Jinja2Templates(directory="templates")
|
| 108 |
|
| 109 |
+
# Middleware 404
|
| 110 |
class NotFoundMiddleware(BaseHTTPMiddleware):
|
| 111 |
async def dispatch(self, request: Request, call_next):
|
| 112 |
try:
|
|
|
|
| 121 |
|
| 122 |
app.add_middleware(NotFoundMiddleware)
|
| 123 |
|
| 124 |
+
# Root
|
| 125 |
@app.get("/", response_class=HTMLResponse)
|
| 126 |
async def root(request: Request):
|
| 127 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 128 |
|
| 129 |
+
# Docs
|
| 130 |
@app.get("/docs", response_class=HTMLResponse)
|
| 131 |
async def docs(request: Request):
|
| 132 |
return templates.TemplateResponse("docs.html", {"request": request})
|
| 133 |
|
| 134 |
+
# Swagger
|
| 135 |
@app.get("/swagger", response_class=HTMLResponse)
|
| 136 |
async def swagger_ui():
|
| 137 |
return get_swagger_ui_html(openapi_url="/openapi.json", title="MGZon API Documentation")
|
| 138 |
|
| 139 |
+
# Redirect
|
| 140 |
@app.get("/launch-chatbot", response_class=RedirectResponse)
|
| 141 |
async def launch_chatbot():
|
| 142 |
return RedirectResponse(url="/gradio", status_code=302)
|
| 143 |
|
| 144 |
+
# Run
|
| 145 |
if __name__ == "__main__":
|
| 146 |
import uvicorn
|
| 147 |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
| 148 |
+
|