Mark-Lasfar
commited on
Commit
·
5e980fd
1
Parent(s):
6ddb9fe
Update Model
Browse files- api/auth.py +33 -8
- api/endpoints.py +258 -96
- static/js/chat.js +107 -92
- utils/generation.py +33 -28
- utils/web_search.py +5 -1
api/auth.py
CHANGED
|
@@ -95,8 +95,21 @@ class UserManager(IntegerIDMixin, BaseUserManager[User, int]):
|
|
| 95 |
logger.info(f"Found existing OAuth account for {oauth_name}, account_id: {account_id}")
|
| 96 |
user = existing_oauth_account.user
|
| 97 |
if user is None:
|
| 98 |
-
logger.error(f"No user associated with OAuth account {account_id}")
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
logger.info(f"Returning existing user: {user.email}")
|
| 101 |
return await self.on_after_login(user, request)
|
| 102 |
|
|
@@ -105,13 +118,25 @@ class UserManager(IntegerIDMixin, BaseUserManager[User, int]):
|
|
| 105 |
statement = select(User).where(User.email == account_email)
|
| 106 |
result = self.user_db.session.execute(statement)
|
| 107 |
user = result.scalars().first()
|
| 108 |
-
if user is
|
| 109 |
-
logger.
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
self.user_db.session.commit()
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# Create new user
|
| 117 |
logger.info(f"Creating new user for email: {account_email}")
|
|
|
|
| 95 |
logger.info(f"Found existing OAuth account for {oauth_name}, account_id: {account_id}")
|
| 96 |
user = existing_oauth_account.user
|
| 97 |
if user is None:
|
| 98 |
+
logger.error(f"No user associated with OAuth account {account_id}. Creating new user.")
|
| 99 |
+
# Create new user if user is None
|
| 100 |
+
user_dict = {
|
| 101 |
+
"email": account_email,
|
| 102 |
+
"hashed_password": self.password_helper.hash("dummy_password"),
|
| 103 |
+
"is_active": True,
|
| 104 |
+
"is_verified": is_verified_by_default,
|
| 105 |
+
}
|
| 106 |
+
user = User(**user_dict)
|
| 107 |
+
self.user_db.session.add(user)
|
| 108 |
+
self.user_db.session.commit()
|
| 109 |
+
self.user_db.session.refresh(user)
|
| 110 |
+
existing_oauth_account.user_id = user.id
|
| 111 |
+
self.user_db.session.commit()
|
| 112 |
+
logger.info(f"Created new user and linked to existing OAuth account: {user.email}")
|
| 113 |
logger.info(f"Returning existing user: {user.email}")
|
| 114 |
return await self.on_after_login(user, request)
|
| 115 |
|
|
|
|
| 118 |
statement = select(User).where(User.email == account_email)
|
| 119 |
result = self.user_db.session.execute(statement)
|
| 120 |
user = result.scalars().first()
|
| 121 |
+
if user is None:
|
| 122 |
+
logger.error(f"No user found for email {account_email}. Creating new user.")
|
| 123 |
+
# Create new user if not found
|
| 124 |
+
user_dict = {
|
| 125 |
+
"email": account_email,
|
| 126 |
+
"hashed_password": self.password_helper.hash("dummy_password"),
|
| 127 |
+
"is_active": True,
|
| 128 |
+
"is_verified": is_verified_by_default,
|
| 129 |
+
}
|
| 130 |
+
user = User(**user_dict)
|
| 131 |
+
self.user_db.session.add(user)
|
| 132 |
self.user_db.session.commit()
|
| 133 |
+
self.user_db.session.refresh(user)
|
| 134 |
+
logger.info(f"Created new user for email: {user.email}")
|
| 135 |
+
oauth_account.user_id = user.id
|
| 136 |
+
self.user_db.session.add(oauth_account)
|
| 137 |
+
self.user_db.session.commit()
|
| 138 |
+
logger.info(f"Associated OAuth account with user: {user.email}")
|
| 139 |
+
return await self.on_after_login(user, request)
|
| 140 |
|
| 141 |
# Create new user
|
| 142 |
logger.info(f"Creating new user for email: {account_email}")
|
api/endpoints.py
CHANGED
|
@@ -8,14 +8,14 @@ from api.models import QueryRequest, ConversationOut, ConversationCreate, UserUp
|
|
| 8 |
from api.auth import current_active_user
|
| 9 |
from api.database import get_db
|
| 10 |
from sqlalchemy.orm import Session
|
| 11 |
-
from utils.generation import request_generation, select_model
|
| 12 |
from utils.web_search import web_search
|
| 13 |
import io
|
| 14 |
from openai import OpenAI
|
| 15 |
from motor.motor_asyncio import AsyncIOMotorClient
|
| 16 |
from datetime import datetime
|
| 17 |
import logging
|
| 18 |
-
from typing import List
|
| 19 |
|
| 20 |
router = APIRouter()
|
| 21 |
logger = logging.getLogger(__name__)
|
|
@@ -31,9 +31,9 @@ if not BACKUP_HF_TOKEN:
|
|
| 31 |
logger.warning("BACKUP_HF_TOKEN is not set. Fallback to secondary model will not work if primary token fails.")
|
| 32 |
|
| 33 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 34 |
-
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api
|
| 35 |
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 36 |
-
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b") #
|
| 37 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 38 |
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "Qwen/Qwen2.5-0.5B-Instruct")
|
| 39 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
|
@@ -85,6 +85,16 @@ async def handle_session(request: Request):
|
|
| 85 |
)
|
| 86 |
return session_id
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
@router.get("/api/settings")
|
| 89 |
async def get_settings(user: User = Depends(current_active_user)):
|
| 90 |
if not user:
|
|
@@ -166,13 +176,18 @@ async def chat_endpoint(
|
|
| 166 |
# Use user's preferred model if set
|
| 167 |
preferred_model = user.preferred_model if user else None
|
| 168 |
model_name, api_endpoint = select_model(req.message, input_type="text", preferred_model=preferred_model)
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
stream = request_generation(
|
| 174 |
-
api_key=
|
| 175 |
-
api_base=
|
| 176 |
message=req.message,
|
| 177 |
system_prompt=system_prompt,
|
| 178 |
model_name=model_name,
|
|
@@ -183,19 +198,39 @@ async def chat_endpoint(
|
|
| 183 |
input_type="text",
|
| 184 |
output_format=req.output_format
|
| 185 |
)
|
|
|
|
| 186 |
if req.output_format == "audio":
|
| 187 |
audio_chunks = []
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
response_chunks = []
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
if user and conversation:
|
| 201 |
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
|
|
@@ -244,12 +279,19 @@ async def audio_transcription_endpoint(
|
|
| 244 |
db.commit()
|
| 245 |
|
| 246 |
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
audio_data = await file.read()
|
| 248 |
stream = request_generation(
|
| 249 |
-
api_key=
|
| 250 |
-
api_base=
|
| 251 |
message="Transcribe audio",
|
| 252 |
-
system_prompt="Transcribe the provided audio using Whisper.",
|
| 253 |
model_name=model_name,
|
| 254 |
temperature=0.7,
|
| 255 |
max_new_tokens=2048,
|
|
@@ -258,11 +300,20 @@ async def audio_transcription_endpoint(
|
|
| 258 |
output_format="text"
|
| 259 |
)
|
| 260 |
response_chunks = []
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
if user and conversation:
|
| 268 |
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
|
|
@@ -290,12 +341,22 @@ async def text_to_speech_endpoint(
|
|
| 290 |
await handle_session(request)
|
| 291 |
|
| 292 |
text = req.get("text", "")
|
|
|
|
|
|
|
|
|
|
| 293 |
model_name, api_endpoint = select_model("text to speech", input_type="tts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
stream = request_generation(
|
| 295 |
-
api_key=
|
| 296 |
-
api_base=
|
| 297 |
message=text,
|
| 298 |
-
system_prompt="Convert the provided text to speech using a text-to-speech model.",
|
| 299 |
model_name=model_name,
|
| 300 |
temperature=0.7,
|
| 301 |
max_new_tokens=2048,
|
|
@@ -303,11 +364,20 @@ async def text_to_speech_endpoint(
|
|
| 303 |
output_format="audio"
|
| 304 |
)
|
| 305 |
audio_chunks = []
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
@router.post("/api/code")
|
| 313 |
async def code_endpoint(
|
|
@@ -323,16 +393,27 @@ async def code_endpoint(
|
|
| 323 |
task = req.get("task")
|
| 324 |
code = req.get("code", "")
|
| 325 |
output_format = req.get("output_format", "text")
|
|
|
|
|
|
|
|
|
|
| 326 |
prompt = f"Generate code for task: {task} using {framework}. Existing code: {code}"
|
| 327 |
preferred_model = user.preferred_model if user else None
|
| 328 |
model_name, api_endpoint = select_model(prompt, input_type="text", preferred_model=preferred_model)
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
stream = request_generation(
|
| 334 |
-
api_key=
|
| 335 |
-
api_base=
|
| 336 |
message=prompt,
|
| 337 |
system_prompt=system_prompt,
|
| 338 |
model_name=model_name,
|
|
@@ -343,17 +424,36 @@ async def code_endpoint(
|
|
| 343 |
)
|
| 344 |
if output_format == "audio":
|
| 345 |
audio_chunks = []
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
response_chunks = []
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
@router.post("/api/analysis")
|
| 359 |
async def analysis_endpoint(
|
|
@@ -367,15 +467,26 @@ async def analysis_endpoint(
|
|
| 367 |
|
| 368 |
message = req.get("text", "")
|
| 369 |
output_format = req.get("output_format", "text")
|
|
|
|
|
|
|
|
|
|
| 370 |
preferred_model = user.preferred_model if user else None
|
| 371 |
model_name, api_endpoint = select_model(message, input_type="text", preferred_model=preferred_model)
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
stream = request_generation(
|
| 377 |
-
api_key=
|
| 378 |
-
api_base=
|
| 379 |
message=message,
|
| 380 |
system_prompt=system_prompt,
|
| 381 |
model_name=model_name,
|
|
@@ -386,17 +497,36 @@ async def analysis_endpoint(
|
|
| 386 |
)
|
| 387 |
if output_format == "audio":
|
| 388 |
audio_chunks = []
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
response_chunks = []
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
@router.post("/api/image-analysis")
|
| 402 |
async def image_analysis_endpoint(
|
|
@@ -430,14 +560,22 @@ async def image_analysis_endpoint(
|
|
| 430 |
|
| 431 |
preferred_model = user.preferred_model if user else None
|
| 432 |
model_name, api_endpoint = select_model("analyze image", input_type="image", preferred_model=preferred_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
image_data = await file.read()
|
| 434 |
-
system_prompt =
|
| 435 |
-
|
| 436 |
-
|
|
|
|
| 437 |
|
| 438 |
stream = request_generation(
|
| 439 |
-
api_key=
|
| 440 |
-
api_base=
|
| 441 |
message="Analyze this image",
|
| 442 |
system_prompt=system_prompt,
|
| 443 |
model_name=model_name,
|
|
@@ -449,36 +587,59 @@ async def image_analysis_endpoint(
|
|
| 449 |
)
|
| 450 |
if output_format == "audio":
|
| 451 |
audio_chunks = []
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
db.commit()
|
| 467 |
-
conversation.updated_at = datetime.utcnow()
|
| 468 |
-
db.commit()
|
| 469 |
-
return {
|
| 470 |
-
"image_analysis": response,
|
| 471 |
-
"conversation_id": conversation.conversation_id,
|
| 472 |
-
"conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
|
| 473 |
-
"conversation_title": conversation.title
|
| 474 |
-
}
|
| 475 |
|
| 476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
|
| 478 |
@router.get("/api/test-model")
|
| 479 |
async def test_model(model: str = MODEL_NAME, endpoint: str = ROUTER_API_URL):
|
| 480 |
try:
|
| 481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
client = OpenAI(api_key=api_key, base_url=selected_endpoint, timeout=60.0)
|
| 483 |
response = client.chat.completions.create(
|
| 484 |
model=model,
|
|
@@ -487,7 +648,8 @@ async def test_model(model: str = MODEL_NAME, endpoint: str = ROUTER_API_URL):
|
|
| 487 |
)
|
| 488 |
return {"status": "success", "response": response.choices[0].message.content}
|
| 489 |
except Exception as e:
|
| 490 |
-
|
|
|
|
| 491 |
|
| 492 |
@router.post("/api/conversations", response_model=ConversationOut)
|
| 493 |
async def create_conversation(
|
|
|
|
| 8 |
from api.auth import current_active_user
|
| 9 |
from api.database import get_db
|
| 10 |
from sqlalchemy.orm import Session
|
| 11 |
+
from utils.generation import request_generation, select_model, check_model_availability
|
| 12 |
from utils.web_search import web_search
|
| 13 |
import io
|
| 14 |
from openai import OpenAI
|
| 15 |
from motor.motor_asyncio import AsyncIOMotorClient
|
| 16 |
from datetime import datetime
|
| 17 |
import logging
|
| 18 |
+
from typing import List, Optional
|
| 19 |
|
| 20 |
router = APIRouter()
|
| 21 |
logger = logging.getLogger(__name__)
|
|
|
|
| 31 |
logger.warning("BACKUP_HF_TOKEN is not set. Fallback to secondary model will not work if primary token fails.")
|
| 32 |
|
| 33 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 34 |
+
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api.cerebras.ai/v1") # تغيير الافتراضي لـ Cerebras
|
| 35 |
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 36 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b") # النموذج الرئيسي
|
| 37 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 38 |
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "Qwen/Qwen2.5-0.5B-Instruct")
|
| 39 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
|
|
|
| 85 |
)
|
| 86 |
return session_id
|
| 87 |
|
| 88 |
+
# Helper function to enhance system prompt for Arabic language
|
| 89 |
+
def enhance_system_prompt(system_prompt: str, message: str, user: Optional[User] = None) -> str:
|
| 90 |
+
enhanced_prompt = system_prompt
|
| 91 |
+
# Check if the message is in Arabic
|
| 92 |
+
if any(0x0600 <= ord(char) <= 0x06FF for char in message):
|
| 93 |
+
enhanced_prompt += "\nRespond in Arabic with clear, concise, and accurate information tailored to the user's query."
|
| 94 |
+
if user and user.additional_info:
|
| 95 |
+
enhanced_prompt += f"\nUser Profile: {user.additional_info}\nConversation Style: {user.conversation_style or 'default'}"
|
| 96 |
+
return enhanced_prompt
|
| 97 |
+
|
| 98 |
@router.get("/api/settings")
|
| 99 |
async def get_settings(user: User = Depends(current_active_user)):
|
| 100 |
if not user:
|
|
|
|
| 176 |
# Use user's preferred model if set
|
| 177 |
preferred_model = user.preferred_model if user else None
|
| 178 |
model_name, api_endpoint = select_model(req.message, input_type="text", preferred_model=preferred_model)
|
| 179 |
+
|
| 180 |
+
# Check model availability
|
| 181 |
+
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 182 |
+
if not is_available:
|
| 183 |
+
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
| 184 |
+
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
|
| 185 |
+
|
| 186 |
+
system_prompt = enhance_system_prompt(req.system_prompt, req.message, user)
|
| 187 |
|
| 188 |
stream = request_generation(
|
| 189 |
+
api_key=api_key,
|
| 190 |
+
api_base=selected_endpoint,
|
| 191 |
message=req.message,
|
| 192 |
system_prompt=system_prompt,
|
| 193 |
model_name=model_name,
|
|
|
|
| 198 |
input_type="text",
|
| 199 |
output_format=req.output_format
|
| 200 |
)
|
| 201 |
+
|
| 202 |
if req.output_format == "audio":
|
| 203 |
audio_chunks = []
|
| 204 |
+
try:
|
| 205 |
+
for chunk in stream:
|
| 206 |
+
if isinstance(chunk, bytes):
|
| 207 |
+
audio_chunks.append(chunk)
|
| 208 |
+
else:
|
| 209 |
+
logger.warning(f"Unexpected non-bytes chunk in audio stream: {chunk}")
|
| 210 |
+
if not audio_chunks:
|
| 211 |
+
logger.error("No audio data generated.")
|
| 212 |
+
raise HTTPException(status_code=500, detail="No audio data generated.")
|
| 213 |
+
audio_data = b"".join(audio_chunks)
|
| 214 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 215 |
+
except Exception as e:
|
| 216 |
+
logger.error(f"Audio generation failed: {e}")
|
| 217 |
+
raise HTTPException(status_code=500, detail=f"Audio generation failed: {str(e)}")
|
| 218 |
+
|
| 219 |
response_chunks = []
|
| 220 |
+
try:
|
| 221 |
+
for chunk in stream:
|
| 222 |
+
if isinstance(chunk, str):
|
| 223 |
+
response_chunks.append(chunk)
|
| 224 |
+
else:
|
| 225 |
+
logger.warning(f"Unexpected non-string chunk in text stream: {chunk}")
|
| 226 |
+
response = "".join(response_chunks)
|
| 227 |
+
if not response.strip():
|
| 228 |
+
logger.error("Empty response generated.")
|
| 229 |
+
raise HTTPException(status_code=500, detail="Empty response generated from model.")
|
| 230 |
+
logger.info(f"Chat response: {response[:100]}...") # Log first 100 chars
|
| 231 |
+
except Exception as e:
|
| 232 |
+
logger.error(f"Chat generation failed: {e}")
|
| 233 |
+
raise HTTPException(status_code=500, detail=f"Chat generation failed: {str(e)}")
|
| 234 |
|
| 235 |
if user and conversation:
|
| 236 |
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
|
|
|
|
| 279 |
db.commit()
|
| 280 |
|
| 281 |
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
|
| 282 |
+
|
| 283 |
+
# Check model availability
|
| 284 |
+
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 285 |
+
if not is_available:
|
| 286 |
+
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
| 287 |
+
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
|
| 288 |
+
|
| 289 |
audio_data = await file.read()
|
| 290 |
stream = request_generation(
|
| 291 |
+
api_key=api_key,
|
| 292 |
+
api_base=selected_endpoint,
|
| 293 |
message="Transcribe audio",
|
| 294 |
+
system_prompt="Transcribe the provided audio using Whisper. Ensure accurate transcription in the detected language.",
|
| 295 |
model_name=model_name,
|
| 296 |
temperature=0.7,
|
| 297 |
max_new_tokens=2048,
|
|
|
|
| 300 |
output_format="text"
|
| 301 |
)
|
| 302 |
response_chunks = []
|
| 303 |
+
try:
|
| 304 |
+
for chunk in stream:
|
| 305 |
+
if isinstance(chunk, str):
|
| 306 |
+
response_chunks.append(chunk)
|
| 307 |
+
else:
|
| 308 |
+
logger.warning(f"Unexpected non-string chunk in transcription stream: {chunk}")
|
| 309 |
+
response = "".join(response_chunks)
|
| 310 |
+
if not response.strip():
|
| 311 |
+
logger.error("Empty transcription generated.")
|
| 312 |
+
raise HTTPException(status_code=500, detail="Empty transcription generated from model.")
|
| 313 |
+
logger.info(f"Audio transcription response: {response[:100]}...")
|
| 314 |
+
except Exception as e:
|
| 315 |
+
logger.error(f"Audio transcription failed: {e}")
|
| 316 |
+
raise HTTPException(status_code=500, detail=f"Audio transcription failed: {str(e)}")
|
| 317 |
|
| 318 |
if user and conversation:
|
| 319 |
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
|
|
|
|
| 341 |
await handle_session(request)
|
| 342 |
|
| 343 |
text = req.get("text", "")
|
| 344 |
+
if not text.strip():
|
| 345 |
+
raise HTTPException(status_code=400, detail="Text input is required for text-to-speech.")
|
| 346 |
+
|
| 347 |
model_name, api_endpoint = select_model("text to speech", input_type="tts")
|
| 348 |
+
|
| 349 |
+
# Check model availability
|
| 350 |
+
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 351 |
+
if not is_available:
|
| 352 |
+
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
| 353 |
+
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
|
| 354 |
+
|
| 355 |
stream = request_generation(
|
| 356 |
+
api_key=api_key,
|
| 357 |
+
api_base=selected_endpoint,
|
| 358 |
message=text,
|
| 359 |
+
system_prompt="Convert the provided text to speech using a text-to-speech model. Ensure clear and natural pronunciation, especially for Arabic text.",
|
| 360 |
model_name=model_name,
|
| 361 |
temperature=0.7,
|
| 362 |
max_new_tokens=2048,
|
|
|
|
| 364 |
output_format="audio"
|
| 365 |
)
|
| 366 |
audio_chunks = []
|
| 367 |
+
try:
|
| 368 |
+
for chunk in stream:
|
| 369 |
+
if isinstance(chunk, bytes):
|
| 370 |
+
audio_chunks.append(chunk)
|
| 371 |
+
else:
|
| 372 |
+
logger.warning(f"Unexpected non-bytes chunk in TTS stream: {chunk}")
|
| 373 |
+
if not audio_chunks:
|
| 374 |
+
logger.error("No audio data generated for TTS.")
|
| 375 |
+
raise HTTPException(status_code=500, detail="No audio data generated for text-to-speech.")
|
| 376 |
+
audio_data = b"".join(audio_chunks)
|
| 377 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 378 |
+
except Exception as e:
|
| 379 |
+
logger.error(f"Text-to-speech generation failed: {e}")
|
| 380 |
+
raise HTTPException(status_code=500, detail=f"Text-to-speech generation failed: {str(e)}")
|
| 381 |
|
| 382 |
@router.post("/api/code")
|
| 383 |
async def code_endpoint(
|
|
|
|
| 393 |
task = req.get("task")
|
| 394 |
code = req.get("code", "")
|
| 395 |
output_format = req.get("output_format", "text")
|
| 396 |
+
if not task:
|
| 397 |
+
raise HTTPException(status_code=400, detail="Task description is required.")
|
| 398 |
+
|
| 399 |
prompt = f"Generate code for task: {task} using {framework}. Existing code: {code}"
|
| 400 |
preferred_model = user.preferred_model if user else None
|
| 401 |
model_name, api_endpoint = select_model(prompt, input_type="text", preferred_model=preferred_model)
|
| 402 |
+
|
| 403 |
+
# Check model availability
|
| 404 |
+
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 405 |
+
if not is_available:
|
| 406 |
+
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
| 407 |
+
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
|
| 408 |
+
|
| 409 |
+
system_prompt = enhance_system_prompt(
|
| 410 |
+
"You are a coding expert. Provide detailed, well-commented code with examples and explanations.",
|
| 411 |
+
prompt, user
|
| 412 |
+
)
|
| 413 |
|
| 414 |
stream = request_generation(
|
| 415 |
+
api_key=api_key,
|
| 416 |
+
api_base=selected_endpoint,
|
| 417 |
message=prompt,
|
| 418 |
system_prompt=system_prompt,
|
| 419 |
model_name=model_name,
|
|
|
|
| 424 |
)
|
| 425 |
if output_format == "audio":
|
| 426 |
audio_chunks = []
|
| 427 |
+
try:
|
| 428 |
+
for chunk in stream:
|
| 429 |
+
if isinstance(chunk, bytes):
|
| 430 |
+
audio_chunks.append(chunk)
|
| 431 |
+
else:
|
| 432 |
+
logger.warning(f"Unexpected non-bytes chunk in code audio stream: {chunk}")
|
| 433 |
+
if not audio_chunks:
|
| 434 |
+
logger.error("No audio data generated for code.")
|
| 435 |
+
raise HTTPException(status_code=500, detail="No audio data generated for code.")
|
| 436 |
+
audio_data = b"".join(audio_chunks)
|
| 437 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 438 |
+
except Exception as e:
|
| 439 |
+
logger.error(f"Code audio generation failed: {e}")
|
| 440 |
+
raise HTTPException(status_code=500, detail=f"Code audio generation failed: {str(e)}")
|
| 441 |
+
|
| 442 |
response_chunks = []
|
| 443 |
+
try:
|
| 444 |
+
for chunk in stream:
|
| 445 |
+
if isinstance(chunk, str):
|
| 446 |
+
response_chunks.append(chunk)
|
| 447 |
+
else:
|
| 448 |
+
logger.warning(f"Unexpected non-string chunk in code stream: {chunk}")
|
| 449 |
+
response = "".join(response_chunks)
|
| 450 |
+
if not response.strip():
|
| 451 |
+
logger.error("Empty code response generated.")
|
| 452 |
+
raise HTTPException(status_code=500, detail="Empty code response generated from model.")
|
| 453 |
+
return {"generated_code": response}
|
| 454 |
+
except Exception as e:
|
| 455 |
+
logger.error(f"Code generation failed: {e}")
|
| 456 |
+
raise HTTPException(status_code=500, detail=f"Code generation failed: {str(e)}")
|
| 457 |
|
| 458 |
@router.post("/api/analysis")
|
| 459 |
async def analysis_endpoint(
|
|
|
|
| 467 |
|
| 468 |
message = req.get("text", "")
|
| 469 |
output_format = req.get("output_format", "text")
|
| 470 |
+
if not message.strip():
|
| 471 |
+
raise HTTPException(status_code=400, detail="Text input is required for analysis.")
|
| 472 |
+
|
| 473 |
preferred_model = user.preferred_model if user else None
|
| 474 |
model_name, api_endpoint = select_model(message, input_type="text", preferred_model=preferred_model)
|
| 475 |
+
|
| 476 |
+
# Check model availability
|
| 477 |
+
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 478 |
+
if not is_available:
|
| 479 |
+
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
| 480 |
+
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
|
| 481 |
+
|
| 482 |
+
system_prompt = enhance_system_prompt(
|
| 483 |
+
"You are an expert analyst. Provide detailed analysis with step-by-step reasoning and examples.",
|
| 484 |
+
message, user
|
| 485 |
+
)
|
| 486 |
|
| 487 |
stream = request_generation(
|
| 488 |
+
api_key=api_key,
|
| 489 |
+
api_base=selected_endpoint,
|
| 490 |
message=message,
|
| 491 |
system_prompt=system_prompt,
|
| 492 |
model_name=model_name,
|
|
|
|
| 497 |
)
|
| 498 |
if output_format == "audio":
|
| 499 |
audio_chunks = []
|
| 500 |
+
try:
|
| 501 |
+
for chunk in stream:
|
| 502 |
+
if isinstance(chunk, bytes):
|
| 503 |
+
audio_chunks.append(chunk)
|
| 504 |
+
else:
|
| 505 |
+
logger.warning(f"Unexpected non-bytes chunk in analysis audio stream: {chunk}")
|
| 506 |
+
if not audio_chunks:
|
| 507 |
+
logger.error("No audio data generated for analysis.")
|
| 508 |
+
raise HTTPException(status_code=500, detail="No audio data generated for analysis.")
|
| 509 |
+
audio_data = b"".join(audio_chunks)
|
| 510 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 511 |
+
except Exception as e:
|
| 512 |
+
logger.error(f"Analysis audio generation failed: {e}")
|
| 513 |
+
raise HTTPException(status_code=500, detail=f"Analysis audio generation failed: {str(e)}")
|
| 514 |
+
|
| 515 |
response_chunks = []
|
| 516 |
+
try:
|
| 517 |
+
for chunk in stream:
|
| 518 |
+
if isinstance(chunk, str):
|
| 519 |
+
response_chunks.append(chunk)
|
| 520 |
+
else:
|
| 521 |
+
logger.warning(f"Unexpected non-string chunk in analysis stream: {chunk}")
|
| 522 |
+
response = "".join(response_chunks)
|
| 523 |
+
if not response.strip():
|
| 524 |
+
logger.error("Empty analysis response generated.")
|
| 525 |
+
raise HTTPException(status_code=500, detail="Empty analysis response generated from model.")
|
| 526 |
+
return {"analysis": response}
|
| 527 |
+
except Exception as e:
|
| 528 |
+
logger.error(f"Analysis generation failed: {e}")
|
| 529 |
+
raise HTTPException(status_code=500, detail=f"Analysis generation failed: {str(e)}")
|
| 530 |
|
| 531 |
@router.post("/api/image-analysis")
|
| 532 |
async def image_analysis_endpoint(
|
|
|
|
| 560 |
|
| 561 |
preferred_model = user.preferred_model if user else None
|
| 562 |
model_name, api_endpoint = select_model("analyze image", input_type="image", preferred_model=preferred_model)
|
| 563 |
+
|
| 564 |
+
# Check model availability
|
| 565 |
+
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 566 |
+
if not is_available:
|
| 567 |
+
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
| 568 |
+
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
|
| 569 |
+
|
| 570 |
image_data = await file.read()
|
| 571 |
+
system_prompt = enhance_system_prompt(
|
| 572 |
+
"You are an expert in image analysis. Provide detailed descriptions or classifications based on the query.",
|
| 573 |
+
"Analyze this image", user
|
| 574 |
+
)
|
| 575 |
|
| 576 |
stream = request_generation(
|
| 577 |
+
api_key=api_key,
|
| 578 |
+
api_base=selected_endpoint,
|
| 579 |
message="Analyze this image",
|
| 580 |
system_prompt=system_prompt,
|
| 581 |
model_name=model_name,
|
|
|
|
| 587 |
)
|
| 588 |
if output_format == "audio":
|
| 589 |
audio_chunks = []
|
| 590 |
+
try:
|
| 591 |
+
for chunk in stream:
|
| 592 |
+
if isinstance(chunk, bytes):
|
| 593 |
+
audio_chunks.append(chunk)
|
| 594 |
+
else:
|
| 595 |
+
logger.warning(f"Unexpected non-bytes chunk in image analysis audio stream: {chunk}")
|
| 596 |
+
if not audio_chunks:
|
| 597 |
+
logger.error("No audio data generated for image analysis.")
|
| 598 |
+
raise HTTPException(status_code=500, detail="No audio data generated for image analysis.")
|
| 599 |
+
audio_data = b"".join(audio_chunks)
|
| 600 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 601 |
+
except Exception as e:
|
| 602 |
+
logger.error(f"Image analysis audio generation failed: {e}")
|
| 603 |
+
raise HTTPException(status_code=500, detail=f"Image analysis audio generation failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
|
| 605 |
+
response_chunks = []
|
| 606 |
+
try:
|
| 607 |
+
for chunk in stream:
|
| 608 |
+
if isinstance(chunk, str):
|
| 609 |
+
response_chunks.append(chunk)
|
| 610 |
+
else:
|
| 611 |
+
logger.warning(f"Unexpected non-string chunk in image analysis stream: {chunk}")
|
| 612 |
+
response = "".join(response_chunks)
|
| 613 |
+
if not response.strip():
|
| 614 |
+
logger.error("Empty image analysis response generated.")
|
| 615 |
+
raise HTTPException(status_code=500, detail="Empty image analysis response generated from model.")
|
| 616 |
+
|
| 617 |
+
if user and conversation:
|
| 618 |
+
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
|
| 619 |
+
db.add(assistant_msg)
|
| 620 |
+
db.commit()
|
| 621 |
+
conversation.updated_at = datetime.utcnow()
|
| 622 |
+
db.commit()
|
| 623 |
+
return {
|
| 624 |
+
"image_analysis": response,
|
| 625 |
+
"conversation_id": conversation.conversation_id,
|
| 626 |
+
"conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
|
| 627 |
+
"conversation_title": conversation.title
|
| 628 |
+
}
|
| 629 |
+
|
| 630 |
+
return {"image_analysis": response}
|
| 631 |
+
except Exception as e:
|
| 632 |
+
logger.error(f"Image analysis failed: {e}")
|
| 633 |
+
raise HTTPException(status_code=500, detail=f"Image analysis failed: {str(e)}")
|
| 634 |
|
| 635 |
@router.get("/api/test-model")
|
| 636 |
async def test_model(model: str = MODEL_NAME, endpoint: str = ROUTER_API_URL):
|
| 637 |
try:
|
| 638 |
+
is_available, api_key, selected_endpoint = check_model_availability(model, HF_TOKEN)
|
| 639 |
+
if not is_available:
|
| 640 |
+
logger.error(f"Model {model} is not available at {endpoint}")
|
| 641 |
+
raise HTTPException(status_code=503, detail=f"Model {model} is not available.")
|
| 642 |
+
|
| 643 |
client = OpenAI(api_key=api_key, base_url=selected_endpoint, timeout=60.0)
|
| 644 |
response = client.chat.completions.create(
|
| 645 |
model=model,
|
|
|
|
| 648 |
)
|
| 649 |
return {"status": "success", "response": response.choices[0].message.content}
|
| 650 |
except Exception as e:
|
| 651 |
+
logger.error(f"Test model failed: {e}")
|
| 652 |
+
raise HTTPException(status_code=500, detail=f"Test model failed: {str(e)}")
|
| 653 |
|
| 654 |
@router.post("/api/conversations", response_model=ConversationOut)
|
| 655 |
async def create_conversation(
|
static/js/chat.js
CHANGED
|
@@ -57,6 +57,11 @@ function autoResizeTextarea() {
|
|
| 57 |
}
|
| 58 |
}
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
// Initialize page
|
| 61 |
document.addEventListener('DOMContentLoaded', async () => {
|
| 62 |
AOS.init({
|
|
@@ -98,9 +103,10 @@ function updateSendButtonState() {
|
|
| 98 |
}
|
| 99 |
}
|
| 100 |
|
| 101 |
-
// Render markdown content
|
| 102 |
function renderMarkdown(el) {
|
| 103 |
const raw = el.dataset.text || '';
|
|
|
|
| 104 |
const html = marked.parse(raw, {
|
| 105 |
gfm: true,
|
| 106 |
breaks: true,
|
|
@@ -108,7 +114,7 @@ function renderMarkdown(el) {
|
|
| 108 |
smartypants: false,
|
| 109 |
headerIds: false,
|
| 110 |
});
|
| 111 |
-
el.innerHTML = `<div class="md-content">${html}</div>`;
|
| 112 |
const wrapper = el.querySelector('.md-content');
|
| 113 |
wrapper.querySelectorAll('table').forEach(t => {
|
| 114 |
if (!t.parentNode.classList?.contains('table-wrapper')) {
|
|
@@ -148,7 +154,7 @@ function leaveChatView() {
|
|
| 148 |
// Add chat bubble
|
| 149 |
function addMsg(who, text) {
|
| 150 |
const div = document.createElement('div');
|
| 151 |
-
div.className = `bubble ${who === 'user' ? 'bubble-user' : 'bubble-assist'}`;
|
| 152 |
div.dataset.text = text;
|
| 153 |
renderMarkdown(div);
|
| 154 |
if (uiElements.chatBox) {
|
|
@@ -230,7 +236,7 @@ function startVoiceRecording() {
|
|
| 230 |
mediaRecorder.addEventListener('dataavailable', event => audioChunks.push(event.data));
|
| 231 |
}).catch(err => {
|
| 232 |
console.error('Error accessing microphone:', err);
|
| 233 |
-
alert('
|
| 234 |
isRecording = false;
|
| 235 |
if (uiElements.sendBtn) uiElements.sendBtn.classList.remove('recording');
|
| 236 |
});
|
|
@@ -253,8 +259,8 @@ function stopVoiceRecording() {
|
|
| 253 |
// Send audio message
|
| 254 |
async function submitAudioMessage(formData) {
|
| 255 |
enterChatView();
|
| 256 |
-
addMsg('user', '
|
| 257 |
-
conversationHistory.push({ role: 'user', content: '
|
| 258 |
sessionStorage.setItem('conversationHistory', JSON.stringify(conversationHistory));
|
| 259 |
streamMsg = addMsg('assistant', '');
|
| 260 |
const loadingEl = document.createElement('span');
|
|
@@ -267,9 +273,12 @@ async function submitAudioMessage(formData) {
|
|
| 267 |
|
| 268 |
try {
|
| 269 |
const response = await sendRequest('/api/audio-transcription', formData);
|
|
|
|
|
|
|
|
|
|
| 270 |
const data = await response.json();
|
| 271 |
-
if (!data.transcription) throw new Error('
|
| 272 |
-
const transcription = data.transcription || '
|
| 273 |
if (streamMsg) {
|
| 274 |
streamMsg.dataset.text = transcription;
|
| 275 |
renderMarkdown(streamMsg);
|
|
@@ -282,7 +291,7 @@ async function submitAudioMessage(formData) {
|
|
| 282 |
}
|
| 283 |
if (checkAuth() && data.conversation_id) {
|
| 284 |
currentConversationId = data.conversation_id;
|
| 285 |
-
currentConversationTitle = data.conversation_title || '
|
| 286 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 287 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 288 |
await loadConversations();
|
|
@@ -297,12 +306,35 @@ async function submitAudioMessage(formData) {
|
|
| 297 |
async function sendRequest(endpoint, body, headers = {}) {
|
| 298 |
const token = checkAuth();
|
| 299 |
if (token) headers['Authorization'] = `Bearer ${token}`;
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
}
|
| 307 |
|
| 308 |
// Helper to update UI during request
|
|
@@ -329,12 +361,13 @@ function finalizeRequest() {
|
|
| 329 |
function handleRequestError(error) {
|
| 330 |
if (streamMsg) {
|
| 331 |
streamMsg.querySelector('.loading')?.remove();
|
| 332 |
-
streamMsg.dataset.text =
|
| 333 |
renderMarkdown(streamMsg);
|
| 334 |
streamMsg.dataset.done = '1';
|
| 335 |
streamMsg = null;
|
| 336 |
}
|
| 337 |
-
console.error('
|
|
|
|
| 338 |
isRequestActive = false;
|
| 339 |
abortController = null;
|
| 340 |
if (uiElements.sendBtn) uiElements.sendBtn.style.display = 'inline-flex';
|
|
@@ -348,7 +381,7 @@ async function loadConversations() {
|
|
| 348 |
const response = await fetch('/api/conversations', {
|
| 349 |
headers: { 'Authorization': `Bearer ${checkAuth()}` }
|
| 350 |
});
|
| 351 |
-
if (!response.ok) throw new Error('
|
| 352 |
const conversations = await response.json();
|
| 353 |
if (uiElements.conversationList) {
|
| 354 |
uiElements.conversationList.innerHTML = '';
|
|
@@ -357,13 +390,13 @@ async function loadConversations() {
|
|
| 357 |
li.className = `flex items-center justify-between text-white hover:bg-gray-700 p-2 rounded cursor-pointer transition-colors ${conv.conversation_id === currentConversationId ? 'bg-gray-700' : ''}`;
|
| 358 |
li.dataset.conversationId = conv.conversation_id;
|
| 359 |
li.innerHTML = `
|
| 360 |
-
<div class="flex items-center flex-1" data-conversation-id="${conv.conversation_id}">
|
| 361 |
<svg class="w-5 h-5 mr-2" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 362 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M8 10h.01M12 10h.01M16 10h.01M9 16H5a2 2 0 01-2-2V6a2 2 0 012-2h14a2 2 0 012 2v8a2 2 0 01-2 2h-5l-5 5v-5z"></path>
|
| 363 |
</svg>
|
| 364 |
-
<span class="truncate flex-1">${conv.title || '
|
| 365 |
</div>
|
| 366 |
-
<button class="delete-conversation-btn text-red-400 hover:text-red-600 p-1" title="
|
| 367 |
<svg class="w-5 h-5" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 368 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M19 7l-.867 12.142A2 2 0 0116.138 21H7.862a2 2 0 01-1.995-1.858L5 7m5-4h4M3 7h18"></path>
|
| 369 |
</svg>
|
|
@@ -375,7 +408,8 @@ async function loadConversations() {
|
|
| 375 |
});
|
| 376 |
}
|
| 377 |
} catch (error) {
|
| 378 |
-
console.error('
|
|
|
|
| 379 |
}
|
| 380 |
}
|
| 381 |
|
|
@@ -387,11 +421,11 @@ async function loadConversation(conversationId) {
|
|
| 387 |
});
|
| 388 |
if (!response.ok) {
|
| 389 |
if (response.status === 401) window.location.href = '/login';
|
| 390 |
-
throw new Error('
|
| 391 |
}
|
| 392 |
const data = await response.json();
|
| 393 |
currentConversationId = data.conversation_id;
|
| 394 |
-
currentConversationTitle = data.title || '
|
| 395 |
conversationHistory = data.messages.map(msg => ({ role: msg.role, content: msg.content }));
|
| 396 |
if (uiElements.chatBox) uiElements.chatBox.innerHTML = '';
|
| 397 |
conversationHistory.forEach(msg => addMsg(msg.role, msg.content));
|
|
@@ -400,14 +434,14 @@ async function loadConversation(conversationId) {
|
|
| 400 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 401 |
toggleSidebar(false);
|
| 402 |
} catch (error) {
|
| 403 |
-
console.error('
|
| 404 |
-
alert('
|
| 405 |
}
|
| 406 |
}
|
| 407 |
|
| 408 |
// Delete conversation
|
| 409 |
async function deleteConversation(conversationId) {
|
| 410 |
-
if (!confirm('
|
| 411 |
try {
|
| 412 |
const response = await fetch(`/api/conversations/${conversationId}`, {
|
| 413 |
method: 'DELETE',
|
|
@@ -415,7 +449,7 @@ async function deleteConversation(conversationId) {
|
|
| 415 |
});
|
| 416 |
if (!response.ok) {
|
| 417 |
if (response.status === 401) window.location.href = '/login';
|
| 418 |
-
throw new Error('
|
| 419 |
}
|
| 420 |
if (conversationId === currentConversationId) {
|
| 421 |
clearAllMessages();
|
|
@@ -425,8 +459,8 @@ async function deleteConversation(conversationId) {
|
|
| 425 |
}
|
| 426 |
await loadConversations();
|
| 427 |
} catch (error) {
|
| 428 |
-
console.error('
|
| 429 |
-
alert('
|
| 430 |
}
|
| 431 |
}
|
| 432 |
|
|
@@ -441,16 +475,16 @@ async function saveMessageToConversation(conversationId, role, content) {
|
|
| 441 |
},
|
| 442 |
body: JSON.stringify({ role, content })
|
| 443 |
});
|
| 444 |
-
if (!response.ok) throw new Error('
|
| 445 |
} catch (error) {
|
| 446 |
-
console.error('
|
| 447 |
}
|
| 448 |
}
|
| 449 |
|
| 450 |
// Create new conversation
|
| 451 |
async function createNewConversation() {
|
| 452 |
if (!checkAuth()) {
|
| 453 |
-
alert('
|
| 454 |
window.location.href = '/login';
|
| 455 |
return;
|
| 456 |
}
|
|
@@ -461,14 +495,14 @@ async function createNewConversation() {
|
|
| 461 |
'Content-Type': 'application/json',
|
| 462 |
'Authorization': `Bearer ${checkAuth()}`
|
| 463 |
},
|
| 464 |
-
body: JSON.stringify({ title: '
|
| 465 |
});
|
| 466 |
if (!response.ok) {
|
| 467 |
if (response.status === 401) {
|
| 468 |
localStorage.removeItem('token');
|
| 469 |
window.location.href = '/login';
|
| 470 |
}
|
| 471 |
-
throw new Error('
|
| 472 |
}
|
| 473 |
const data = await response.json();
|
| 474 |
currentConversationId = data.conversation_id;
|
|
@@ -482,8 +516,8 @@ async function createNewConversation() {
|
|
| 482 |
await loadConversations();
|
| 483 |
toggleSidebar(false);
|
| 484 |
} catch (error) {
|
| 485 |
-
console.error('
|
| 486 |
-
alert('
|
| 487 |
}
|
| 488 |
}
|
| 489 |
|
|
@@ -498,14 +532,14 @@ async function updateConversationTitle(conversationId, newTitle) {
|
|
| 498 |
},
|
| 499 |
body: JSON.stringify({ title: newTitle })
|
| 500 |
});
|
| 501 |
-
if (!response.ok) throw new Error('
|
| 502 |
const data = await response.json();
|
| 503 |
currentConversationTitle = data.title;
|
| 504 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 505 |
await loadConversations();
|
| 506 |
} catch (error) {
|
| 507 |
-
console.error('
|
| 508 |
-
alert('
|
| 509 |
}
|
| 510 |
}
|
| 511 |
|
|
@@ -598,7 +632,7 @@ async function submitMessage() {
|
|
| 598 |
if (file.type.startsWith('image/')) {
|
| 599 |
endpoint = '/api/image-analysis';
|
| 600 |
inputType = 'image';
|
| 601 |
-
message = '
|
| 602 |
formData = new FormData();
|
| 603 |
formData.append('file', file);
|
| 604 |
formData.append('output_format', 'text');
|
|
@@ -608,14 +642,16 @@ async function submitMessage() {
|
|
| 608 |
if (file.type.startsWith('audio/')) {
|
| 609 |
endpoint = '/api/audio-transcription';
|
| 610 |
inputType = 'audio';
|
| 611 |
-
message = '
|
| 612 |
formData = new FormData();
|
| 613 |
formData.append('file', file);
|
| 614 |
}
|
| 615 |
} else if (message) {
|
| 616 |
payload = {
|
| 617 |
message,
|
| 618 |
-
system_prompt:
|
|
|
|
|
|
|
| 619 |
history: conversationHistory,
|
| 620 |
temperature: 0.7,
|
| 621 |
max_new_tokens: 128000,
|
|
@@ -643,31 +679,10 @@ async function submitMessage() {
|
|
| 643 |
|
| 644 |
try {
|
| 645 |
const response = await sendRequest(endpoint, payload ? JSON.stringify(payload) : formData, headers);
|
| 646 |
-
if (!response.ok) {
|
| 647 |
-
if (response.status === 403) {
|
| 648 |
-
if (uiElements.messageLimitWarning) uiElements.messageLimitWarning.classList.remove('hidden');
|
| 649 |
-
if (uiElements.input) uiElements.input.disabled = true;
|
| 650 |
-
if (streamMsg) streamMsg.querySelector('.loading')?.remove();
|
| 651 |
-
streamMsg = null;
|
| 652 |
-
isRequestActive = false;
|
| 653 |
-
abortController = null;
|
| 654 |
-
if (uiElements.sendBtn) uiElements.sendBtn.style.display = 'inline-flex';
|
| 655 |
-
if (uiElements.stopBtn) uiElements.stopBtn.style.display = 'none';
|
| 656 |
-
setTimeout(() => window.location.href = '/login', 3000);
|
| 657 |
-
return;
|
| 658 |
-
}
|
| 659 |
-
if (response.status === 401) {
|
| 660 |
-
localStorage.removeItem('token');
|
| 661 |
-
window.location.href = '/login';
|
| 662 |
-
return;
|
| 663 |
-
}
|
| 664 |
-
throw new Error(`Request failed with status ${response.status}`);
|
| 665 |
-
}
|
| 666 |
-
|
| 667 |
if (endpoint === '/api/audio-transcription') {
|
| 668 |
const data = await response.json();
|
| 669 |
-
if (!data.transcription) throw new Error('
|
| 670 |
-
const transcription = data.transcription || '
|
| 671 |
if (streamMsg) {
|
| 672 |
streamMsg.dataset.text = transcription;
|
| 673 |
renderMarkdown(streamMsg);
|
|
@@ -680,14 +695,14 @@ async function submitMessage() {
|
|
| 680 |
}
|
| 681 |
if (checkAuth() && data.conversation_id) {
|
| 682 |
currentConversationId = data.conversation_id;
|
| 683 |
-
currentConversationTitle = data.conversation_title || '
|
| 684 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 685 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 686 |
await loadConversations();
|
| 687 |
}
|
| 688 |
} else if (endpoint === '/api/image-analysis') {
|
| 689 |
const data = await response.json();
|
| 690 |
-
const analysis = data.image_analysis || '
|
| 691 |
if (streamMsg) {
|
| 692 |
streamMsg.dataset.text = analysis;
|
| 693 |
renderMarkdown(streamMsg);
|
|
@@ -700,7 +715,7 @@ async function submitMessage() {
|
|
| 700 |
}
|
| 701 |
if (checkAuth() && data.conversation_id) {
|
| 702 |
currentConversationId = data.conversation_id;
|
| 703 |
-
currentConversationTitle = data.conversation_title || '
|
| 704 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 705 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 706 |
await loadConversations();
|
|
@@ -709,7 +724,7 @@ async function submitMessage() {
|
|
| 709 |
const contentType = response.headers.get('Content-Type');
|
| 710 |
if (contentType?.includes('application/json')) {
|
| 711 |
const data = await response.json();
|
| 712 |
-
const responseText = data.response || '
|
| 713 |
if (streamMsg) {
|
| 714 |
streamMsg.dataset.text = responseText;
|
| 715 |
renderMarkdown(streamMsg);
|
|
@@ -722,7 +737,7 @@ async function submitMessage() {
|
|
| 722 |
}
|
| 723 |
if (checkAuth() && data.conversation_id) {
|
| 724 |
currentConversationId = data.conversation_id;
|
| 725 |
-
currentConversationTitle = data.conversation_title || '
|
| 726 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 727 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 728 |
await loadConversations();
|
|
@@ -733,7 +748,10 @@ async function submitMessage() {
|
|
| 733 |
let buffer = '';
|
| 734 |
while (true) {
|
| 735 |
const { done, value } = await reader.read();
|
| 736 |
-
if (done)
|
|
|
|
|
|
|
|
|
|
| 737 |
buffer += decoder.decode(value, { stream: true });
|
| 738 |
if (streamMsg) {
|
| 739 |
streamMsg.dataset.text = buffer;
|
|
@@ -782,12 +800,12 @@ function stopStream(forceCancel = false) {
|
|
| 782 |
if (uiElements.settingsBtn) {
|
| 783 |
uiElements.settingsBtn.addEventListener('click', () => {
|
| 784 |
if (!checkAuth()) {
|
| 785 |
-
alert('
|
| 786 |
window.location.href = '/login';
|
| 787 |
return;
|
| 788 |
}
|
| 789 |
uiElements.settingsModal.classList.remove('hidden');
|
| 790 |
-
fetch('/api/settings', {
|
| 791 |
headers: { 'Authorization': `Bearer ${checkAuth()}` }
|
| 792 |
})
|
| 793 |
.then(res => {
|
|
@@ -796,12 +814,11 @@ if (uiElements.settingsBtn) {
|
|
| 796 |
localStorage.removeItem('token');
|
| 797 |
window.location.href = '/login';
|
| 798 |
}
|
| 799 |
-
throw new Error('
|
| 800 |
}
|
| 801 |
return res.json();
|
| 802 |
})
|
| 803 |
.then(data => {
|
| 804 |
-
// تعبئة حقول الـ form
|
| 805 |
document.getElementById('display_name').value = data.user_settings.display_name || '';
|
| 806 |
document.getElementById('preferred_model').value = data.user_settings.preferred_model || 'standard';
|
| 807 |
document.getElementById('job_title').value = data.user_settings.job_title || '';
|
|
@@ -810,9 +827,8 @@ if (uiElements.settingsBtn) {
|
|
| 810 |
document.getElementById('additional_info').value = data.user_settings.additional_info || '';
|
| 811 |
document.getElementById('conversation_style').value = data.user_settings.conversation_style || 'default';
|
| 812 |
|
| 813 |
-
// تعبئة خيارات preferred_model ديناميكيًا
|
| 814 |
const modelSelect = document.getElementById('preferred_model');
|
| 815 |
-
modelSelect.innerHTML = '';
|
| 816 |
data.available_models.forEach(model => {
|
| 817 |
const option = document.createElement('option');
|
| 818 |
option.value = model.alias;
|
|
@@ -820,19 +836,18 @@ if (uiElements.settingsBtn) {
|
|
| 820 |
modelSelect.appendChild(option);
|
| 821 |
});
|
| 822 |
|
| 823 |
-
// تعبئة خيارات conversation_style ديناميكيًا
|
| 824 |
const styleSelect = document.getElementById('conversation_style');
|
| 825 |
-
styleSelect.innerHTML = '';
|
| 826 |
data.conversation_styles.forEach(style => {
|
| 827 |
const option = document.createElement('option');
|
| 828 |
option.value = style;
|
| 829 |
-
option.textContent = style.charAt(0).toUpperCase() + style.slice(1);
|
| 830 |
styleSelect.appendChild(option);
|
| 831 |
});
|
| 832 |
})
|
| 833 |
.catch(err => {
|
| 834 |
-
console.error('
|
| 835 |
-
alert('
|
| 836 |
});
|
| 837 |
});
|
| 838 |
}
|
|
@@ -847,7 +862,7 @@ if (uiElements.settingsForm) {
|
|
| 847 |
uiElements.settingsForm.addEventListener('submit', (e) => {
|
| 848 |
e.preventDefault();
|
| 849 |
if (!checkAuth()) {
|
| 850 |
-
alert('
|
| 851 |
window.location.href = '/login';
|
| 852 |
return;
|
| 853 |
}
|
|
@@ -867,18 +882,18 @@ if (uiElements.settingsForm) {
|
|
| 867 |
localStorage.removeItem('token');
|
| 868 |
window.location.href = '/login';
|
| 869 |
}
|
| 870 |
-
throw new Error('
|
| 871 |
}
|
| 872 |
return res.json();
|
| 873 |
})
|
| 874 |
.then(() => {
|
| 875 |
-
alert('
|
| 876 |
uiElements.settingsModal.classList.add('hidden');
|
| 877 |
toggleSidebar(false);
|
| 878 |
})
|
| 879 |
.catch(err => {
|
| 880 |
-
console.error('
|
| 881 |
-
alert('
|
| 882 |
});
|
| 883 |
});
|
| 884 |
}
|
|
@@ -891,10 +906,10 @@ if (uiElements.historyToggle) {
|
|
| 891 |
uiElements.historyToggle.innerHTML = uiElements.conversationList.classList.contains('hidden')
|
| 892 |
? `<svg class="w-5 h-5 mr-2" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 893 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M12 8v4l3 3m6-3a9 9 0 11-18 0 9 9 0 0118 0z"></path>
|
| 894 |
-
</svg
|
| 895 |
: `<svg class="w-5 h-5 mr-2" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 896 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M6 18L18 6M6 6l12 12"></path>
|
| 897 |
-
</svg
|
| 898 |
}
|
| 899 |
});
|
| 900 |
}
|
|
@@ -970,8 +985,8 @@ if (uiElements.clearBtn) uiElements.clearBtn.addEventListener('click', clearAllM
|
|
| 970 |
|
| 971 |
if (uiElements.conversationTitle) {
|
| 972 |
uiElements.conversationTitle.addEventListener('click', () => {
|
| 973 |
-
if (!checkAuth()) return alert('
|
| 974 |
-
const newTitle = prompt('
|
| 975 |
if (newTitle && currentConversationId) {
|
| 976 |
updateConversationTitle(currentConversationId, newTitle);
|
| 977 |
}
|
|
|
|
| 57 |
}
|
| 58 |
}
|
| 59 |
|
| 60 |
+
// Detect Arabic text
|
| 61 |
+
function isArabicText(text) {
|
| 62 |
+
return /[\u0600-\u06FF]/.test(text);
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
// Initialize page
|
| 66 |
document.addEventListener('DOMContentLoaded', async () => {
|
| 67 |
AOS.init({
|
|
|
|
| 103 |
}
|
| 104 |
}
|
| 105 |
|
| 106 |
+
// Render markdown content with RTL support
|
| 107 |
function renderMarkdown(el) {
|
| 108 |
const raw = el.dataset.text || '';
|
| 109 |
+
const isArabic = isArabicText(raw);
|
| 110 |
const html = marked.parse(raw, {
|
| 111 |
gfm: true,
|
| 112 |
breaks: true,
|
|
|
|
| 114 |
smartypants: false,
|
| 115 |
headerIds: false,
|
| 116 |
});
|
| 117 |
+
el.innerHTML = `<div class="md-content" style="direction: ${isArabic ? 'rtl' : 'ltr'}; text-align: ${isArabic ? 'right' : 'left'};">${html}</div>`;
|
| 118 |
const wrapper = el.querySelector('.md-content');
|
| 119 |
wrapper.querySelectorAll('table').forEach(t => {
|
| 120 |
if (!t.parentNode.classList?.contains('table-wrapper')) {
|
|
|
|
| 154 |
// Add chat bubble
|
| 155 |
function addMsg(who, text) {
|
| 156 |
const div = document.createElement('div');
|
| 157 |
+
div.className = `bubble ${who === 'user' ? 'bubble-user' : 'bubble-assist'} ${isArabicText(text) ? 'rtl' : ''}`;
|
| 158 |
div.dataset.text = text;
|
| 159 |
renderMarkdown(div);
|
| 160 |
if (uiElements.chatBox) {
|
|
|
|
| 236 |
mediaRecorder.addEventListener('dataavailable', event => audioChunks.push(event.data));
|
| 237 |
}).catch(err => {
|
| 238 |
console.error('Error accessing microphone:', err);
|
| 239 |
+
alert('فشل الوصول إلى الميكروفون. من فضلك، تحقق من الأذونات.');
|
| 240 |
isRecording = false;
|
| 241 |
if (uiElements.sendBtn) uiElements.sendBtn.classList.remove('recording');
|
| 242 |
});
|
|
|
|
| 259 |
// Send audio message
|
| 260 |
async function submitAudioMessage(formData) {
|
| 261 |
enterChatView();
|
| 262 |
+
addMsg('user', 'رسالة صوتية');
|
| 263 |
+
conversationHistory.push({ role: 'user', content: 'رسالة صوتية' });
|
| 264 |
sessionStorage.setItem('conversationHistory', JSON.stringify(conversationHistory));
|
| 265 |
streamMsg = addMsg('assistant', '');
|
| 266 |
const loadingEl = document.createElement('span');
|
|
|
|
| 273 |
|
| 274 |
try {
|
| 275 |
const response = await sendRequest('/api/audio-transcription', formData);
|
| 276 |
+
if (!response.ok) {
|
| 277 |
+
throw new Error(`Request failed with status ${response.status}`);
|
| 278 |
+
}
|
| 279 |
const data = await response.json();
|
| 280 |
+
if (!data.transcription) throw new Error('لم يتم استلام نص النسخ من الخادم');
|
| 281 |
+
const transcription = data.transcription || 'خطأ: لم يتم إنشاء نص النسخ.';
|
| 282 |
if (streamMsg) {
|
| 283 |
streamMsg.dataset.text = transcription;
|
| 284 |
renderMarkdown(streamMsg);
|
|
|
|
| 291 |
}
|
| 292 |
if (checkAuth() && data.conversation_id) {
|
| 293 |
currentConversationId = data.conversation_id;
|
| 294 |
+
currentConversationTitle = data.conversation_title || 'محادثة بدون عنوان';
|
| 295 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 296 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 297 |
await loadConversations();
|
|
|
|
| 306 |
async function sendRequest(endpoint, body, headers = {}) {
|
| 307 |
const token = checkAuth();
|
| 308 |
if (token) headers['Authorization'] = `Bearer ${token}`;
|
| 309 |
+
try {
|
| 310 |
+
const response = await fetch(endpoint, {
|
| 311 |
+
method: 'POST',
|
| 312 |
+
body,
|
| 313 |
+
headers,
|
| 314 |
+
signal: abortController?.signal,
|
| 315 |
+
});
|
| 316 |
+
if (!response.ok) {
|
| 317 |
+
if (response.status === 403) {
|
| 318 |
+
if (uiElements.messageLimitWarning) uiElements.messageLimitWarning.classList.remove('hidden');
|
| 319 |
+
throw new Error('تم الوصول إلى الحد الأقصى للرسائل. من فضلك، سجل الدخول للمتابعة.');
|
| 320 |
+
}
|
| 321 |
+
if (response.status === 401) {
|
| 322 |
+
localStorage.removeItem('token');
|
| 323 |
+
window.location.href = '/login';
|
| 324 |
+
throw new Error('غير مصرح. من فضلك، سجل الدخول مرة أخرى.');
|
| 325 |
+
}
|
| 326 |
+
if (response.status === 503) {
|
| 327 |
+
throw new Error('النموذج غير متاح حاليًا. من فضلك، حاول استخدام نموذج آخر.');
|
| 328 |
+
}
|
| 329 |
+
throw new Error(`فشل الطلب: ${response.status}`);
|
| 330 |
+
}
|
| 331 |
+
return response;
|
| 332 |
+
} catch (error) {
|
| 333 |
+
if (error.name === 'AbortError') {
|
| 334 |
+
throw new Error('تم إلغاء الطلب');
|
| 335 |
+
}
|
| 336 |
+
throw error;
|
| 337 |
+
}
|
| 338 |
}
|
| 339 |
|
| 340 |
// Helper to update UI during request
|
|
|
|
| 361 |
function handleRequestError(error) {
|
| 362 |
if (streamMsg) {
|
| 363 |
streamMsg.querySelector('.loading')?.remove();
|
| 364 |
+
streamMsg.dataset.text = `خطأ: ${error.message || 'حدث خطأ أثناء الطلب.'}`;
|
| 365 |
renderMarkdown(streamMsg);
|
| 366 |
streamMsg.dataset.done = '1';
|
| 367 |
streamMsg = null;
|
| 368 |
}
|
| 369 |
+
console.error('خطأ في الطلب:', error);
|
| 370 |
+
alert(`خطأ: ${error.message || 'حدث خطأ أثناء الطلب.'}`);
|
| 371 |
isRequestActive = false;
|
| 372 |
abortController = null;
|
| 373 |
if (uiElements.sendBtn) uiElements.sendBtn.style.display = 'inline-flex';
|
|
|
|
| 381 |
const response = await fetch('/api/conversations', {
|
| 382 |
headers: { 'Authorization': `Bearer ${checkAuth()}` }
|
| 383 |
});
|
| 384 |
+
if (!response.ok) throw new Error('فشل تحميل المحادثات');
|
| 385 |
const conversations = await response.json();
|
| 386 |
if (uiElements.conversationList) {
|
| 387 |
uiElements.conversationList.innerHTML = '';
|
|
|
|
| 390 |
li.className = `flex items-center justify-between text-white hover:bg-gray-700 p-2 rounded cursor-pointer transition-colors ${conv.conversation_id === currentConversationId ? 'bg-gray-700' : ''}`;
|
| 391 |
li.dataset.conversationId = conv.conversation_id;
|
| 392 |
li.innerHTML = `
|
| 393 |
+
<div class="flex items-center flex-1" style="direction: ${isArabicText(conv.title) ? 'rtl' : 'ltr'};" data-conversation-id="${conv.conversation_id}">
|
| 394 |
<svg class="w-5 h-5 mr-2" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 395 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M8 10h.01M12 10h.01M16 10h.01M9 16H5a2 2 0 01-2-2V6a2 2 0 012-2h14a2 2 0 012 2v8a2 2 0 01-2 2h-5l-5 5v-5z"></path>
|
| 396 |
</svg>
|
| 397 |
+
<span class="truncate flex-1">${conv.title || 'محادثة بدون عنوان'}</span>
|
| 398 |
</div>
|
| 399 |
+
<button class="delete-conversation-btn text-red-400 hover:text-red-600 p-1" title="حذف المحادثة" data-conversation-id="${conv.conversation_id}">
|
| 400 |
<svg class="w-5 h-5" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 401 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M19 7l-.867 12.142A2 2 0 0116.138 21H7.862a2 2 0 01-1.995-1.858L5 7m5-4h4M3 7h18"></path>
|
| 402 |
</svg>
|
|
|
|
| 408 |
});
|
| 409 |
}
|
| 410 |
} catch (error) {
|
| 411 |
+
console.error('خطأ في تحميل المحادثات:', error);
|
| 412 |
+
alert('فشل تحميل المحادثات. من فضلك، حاول مرة أخرى.');
|
| 413 |
}
|
| 414 |
}
|
| 415 |
|
|
|
|
| 421 |
});
|
| 422 |
if (!response.ok) {
|
| 423 |
if (response.status === 401) window.location.href = '/login';
|
| 424 |
+
throw new Error('فشل تحميل المحادثة');
|
| 425 |
}
|
| 426 |
const data = await response.json();
|
| 427 |
currentConversationId = data.conversation_id;
|
| 428 |
+
currentConversationTitle = data.title || 'محادثة بدون عنوان';
|
| 429 |
conversationHistory = data.messages.map(msg => ({ role: msg.role, content: msg.content }));
|
| 430 |
if (uiElements.chatBox) uiElements.chatBox.innerHTML = '';
|
| 431 |
conversationHistory.forEach(msg => addMsg(msg.role, msg.content));
|
|
|
|
| 434 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 435 |
toggleSidebar(false);
|
| 436 |
} catch (error) {
|
| 437 |
+
console.error('خطأ في تحميل المحادثة:', error);
|
| 438 |
+
alert('فشل تحميل المحادثة. من فضلك، حاول مرة أخرى أو سجل الدخول.');
|
| 439 |
}
|
| 440 |
}
|
| 441 |
|
| 442 |
// Delete conversation
|
| 443 |
async function deleteConversation(conversationId) {
|
| 444 |
+
if (!confirm('هل أنت متأكد من حذف هذه المحادثة؟')) return;
|
| 445 |
try {
|
| 446 |
const response = await fetch(`/api/conversations/${conversationId}`, {
|
| 447 |
method: 'DELETE',
|
|
|
|
| 449 |
});
|
| 450 |
if (!response.ok) {
|
| 451 |
if (response.status === 401) window.location.href = '/login';
|
| 452 |
+
throw new Error('فشل حذف المحادثة');
|
| 453 |
}
|
| 454 |
if (conversationId === currentConversationId) {
|
| 455 |
clearAllMessages();
|
|
|
|
| 459 |
}
|
| 460 |
await loadConversations();
|
| 461 |
} catch (error) {
|
| 462 |
+
console.error('خطأ في حذف المحادثة:', error);
|
| 463 |
+
alert('فشل حذف المحادثة. من فضلك، حاول مرة أخرى.');
|
| 464 |
}
|
| 465 |
}
|
| 466 |
|
|
|
|
| 475 |
},
|
| 476 |
body: JSON.stringify({ role, content })
|
| 477 |
});
|
| 478 |
+
if (!response.ok) throw new Error('فشل حفظ الرسالة');
|
| 479 |
} catch (error) {
|
| 480 |
+
console.error('خطأ في حفظ الرسالة:', error);
|
| 481 |
}
|
| 482 |
}
|
| 483 |
|
| 484 |
// Create new conversation
|
| 485 |
async function createNewConversation() {
|
| 486 |
if (!checkAuth()) {
|
| 487 |
+
alert('من فضلك، سجل الدخول لإنشاء محادثة جديدة.');
|
| 488 |
window.location.href = '/login';
|
| 489 |
return;
|
| 490 |
}
|
|
|
|
| 495 |
'Content-Type': 'application/json',
|
| 496 |
'Authorization': `Bearer ${checkAuth()}`
|
| 497 |
},
|
| 498 |
+
body: JSON.stringify({ title: 'محادثة جديدة' })
|
| 499 |
});
|
| 500 |
if (!response.ok) {
|
| 501 |
if (response.status === 401) {
|
| 502 |
localStorage.removeItem('token');
|
| 503 |
window.location.href = '/login';
|
| 504 |
}
|
| 505 |
+
throw new Error('فشل إنشاء المحادثة');
|
| 506 |
}
|
| 507 |
const data = await response.json();
|
| 508 |
currentConversationId = data.conversation_id;
|
|
|
|
| 516 |
await loadConversations();
|
| 517 |
toggleSidebar(false);
|
| 518 |
} catch (error) {
|
| 519 |
+
console.error('خطأ في إنشاء المحادثة:', error);
|
| 520 |
+
alert('فشل إنشاء محادثة جديدة. من فضلك، حاول مرة أخرى.');
|
| 521 |
}
|
| 522 |
}
|
| 523 |
|
|
|
|
| 532 |
},
|
| 533 |
body: JSON.stringify({ title: newTitle })
|
| 534 |
});
|
| 535 |
+
if (!response.ok) throw new Error('فشل تحديث العنوان');
|
| 536 |
const data = await response.json();
|
| 537 |
currentConversationTitle = data.title;
|
| 538 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 539 |
await loadConversations();
|
| 540 |
} catch (error) {
|
| 541 |
+
console.error('خطأ في تحديث العنوان:', error);
|
| 542 |
+
alert('فشل تحديث عنوان المحادثة.');
|
| 543 |
}
|
| 544 |
}
|
| 545 |
|
|
|
|
| 632 |
if (file.type.startsWith('image/')) {
|
| 633 |
endpoint = '/api/image-analysis';
|
| 634 |
inputType = 'image';
|
| 635 |
+
message = 'تحليل هذه الصورة';
|
| 636 |
formData = new FormData();
|
| 637 |
formData.append('file', file);
|
| 638 |
formData.append('output_format', 'text');
|
|
|
|
| 642 |
if (file.type.startsWith('audio/')) {
|
| 643 |
endpoint = '/api/audio-transcription';
|
| 644 |
inputType = 'audio';
|
| 645 |
+
message = 'نسخ هذا الصوت';
|
| 646 |
formData = new FormData();
|
| 647 |
formData.append('file', file);
|
| 648 |
}
|
| 649 |
} else if (message) {
|
| 650 |
payload = {
|
| 651 |
message,
|
| 652 |
+
system_prompt: isArabicText(message)
|
| 653 |
+
? 'أنت مساعد ذكي تقدم إجابات مفصلة ومنظمة باللغة العربية، مع ضمان الدقة والوضوح.'
|
| 654 |
+
: 'You are an expert assistant providing detailed, comprehensive, and well-structured responses.',
|
| 655 |
history: conversationHistory,
|
| 656 |
temperature: 0.7,
|
| 657 |
max_new_tokens: 128000,
|
|
|
|
| 679 |
|
| 680 |
try {
|
| 681 |
const response = await sendRequest(endpoint, payload ? JSON.stringify(payload) : formData, headers);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
if (endpoint === '/api/audio-transcription') {
|
| 683 |
const data = await response.json();
|
| 684 |
+
if (!data.transcription) throw new Error('لم يتم استلام نص النسخ من الخادم');
|
| 685 |
+
const transcription = data.transcription || 'خطأ: لم يتم إنشاء نص النسخ.';
|
| 686 |
if (streamMsg) {
|
| 687 |
streamMsg.dataset.text = transcription;
|
| 688 |
renderMarkdown(streamMsg);
|
|
|
|
| 695 |
}
|
| 696 |
if (checkAuth() && data.conversation_id) {
|
| 697 |
currentConversationId = data.conversation_id;
|
| 698 |
+
currentConversationTitle = data.conversation_title || 'محادثة بدون عنوان';
|
| 699 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 700 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 701 |
await loadConversations();
|
| 702 |
}
|
| 703 |
} else if (endpoint === '/api/image-analysis') {
|
| 704 |
const data = await response.json();
|
| 705 |
+
const analysis = data.image_analysis || 'خطأ: لم يتم إنشاء تحليل.';
|
| 706 |
if (streamMsg) {
|
| 707 |
streamMsg.dataset.text = analysis;
|
| 708 |
renderMarkdown(streamMsg);
|
|
|
|
| 715 |
}
|
| 716 |
if (checkAuth() && data.conversation_id) {
|
| 717 |
currentConversationId = data.conversation_id;
|
| 718 |
+
currentConversationTitle = data.conversation_title || 'محادثة بدون عنوان';
|
| 719 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 720 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 721 |
await loadConversations();
|
|
|
|
| 724 |
const contentType = response.headers.get('Content-Type');
|
| 725 |
if (contentType?.includes('application/json')) {
|
| 726 |
const data = await response.json();
|
| 727 |
+
const responseText = data.response || 'خطأ: لم يتم إنشاء رد.';
|
| 728 |
if (streamMsg) {
|
| 729 |
streamMsg.dataset.text = responseText;
|
| 730 |
renderMarkdown(streamMsg);
|
|
|
|
| 737 |
}
|
| 738 |
if (checkAuth() && data.conversation_id) {
|
| 739 |
currentConversationId = data.conversation_id;
|
| 740 |
+
currentConversationTitle = data.conversation_title || 'محادثة بدون عنوان';
|
| 741 |
if (uiElements.conversationTitle) uiElements.conversationTitle.textContent = currentConversationTitle;
|
| 742 |
history.pushState(null, '', `/chat/${currentConversationId}`);
|
| 743 |
await loadConversations();
|
|
|
|
| 748 |
let buffer = '';
|
| 749 |
while (true) {
|
| 750 |
const { done, value } = await reader.read();
|
| 751 |
+
if (done) {
|
| 752 |
+
if (!buffer.trim()) throw new Error('الرد فارغ من الخادم');
|
| 753 |
+
break;
|
| 754 |
+
}
|
| 755 |
buffer += decoder.decode(value, { stream: true });
|
| 756 |
if (streamMsg) {
|
| 757 |
streamMsg.dataset.text = buffer;
|
|
|
|
| 800 |
if (uiElements.settingsBtn) {
|
| 801 |
uiElements.settingsBtn.addEventListener('click', () => {
|
| 802 |
if (!checkAuth()) {
|
| 803 |
+
alert('من فضلك، سجل الدخول للوصول إلى الإعدادات.');
|
| 804 |
window.location.href = '/login';
|
| 805 |
return;
|
| 806 |
}
|
| 807 |
uiElements.settingsModal.classList.remove('hidden');
|
| 808 |
+
fetch('/api/settings', {
|
| 809 |
headers: { 'Authorization': `Bearer ${checkAuth()}` }
|
| 810 |
})
|
| 811 |
.then(res => {
|
|
|
|
| 814 |
localStorage.removeItem('token');
|
| 815 |
window.location.href = '/login';
|
| 816 |
}
|
| 817 |
+
throw new Error('فشل جلب الإعدادات');
|
| 818 |
}
|
| 819 |
return res.json();
|
| 820 |
})
|
| 821 |
.then(data => {
|
|
|
|
| 822 |
document.getElementById('display_name').value = data.user_settings.display_name || '';
|
| 823 |
document.getElementById('preferred_model').value = data.user_settings.preferred_model || 'standard';
|
| 824 |
document.getElementById('job_title').value = data.user_settings.job_title || '';
|
|
|
|
| 827 |
document.getElementById('additional_info').value = data.user_settings.additional_info || '';
|
| 828 |
document.getElementById('conversation_style').value = data.user_settings.conversation_style || 'default';
|
| 829 |
|
|
|
|
| 830 |
const modelSelect = document.getElementById('preferred_model');
|
| 831 |
+
modelSelect.innerHTML = '';
|
| 832 |
data.available_models.forEach(model => {
|
| 833 |
const option = document.createElement('option');
|
| 834 |
option.value = model.alias;
|
|
|
|
| 836 |
modelSelect.appendChild(option);
|
| 837 |
});
|
| 838 |
|
|
|
|
| 839 |
const styleSelect = document.getElementById('conversation_style');
|
| 840 |
+
styleSelect.innerHTML = '';
|
| 841 |
data.conversation_styles.forEach(style => {
|
| 842 |
const option = document.createElement('option');
|
| 843 |
option.value = style;
|
| 844 |
+
option.textContent = style.charAt(0).toUpperCase() + style.slice(1);
|
| 845 |
styleSelect.appendChild(option);
|
| 846 |
});
|
| 847 |
})
|
| 848 |
.catch(err => {
|
| 849 |
+
console.error('خطأ في جلب الإعدادات:', err);
|
| 850 |
+
alert('فشل تحميل الإعدادات. من فضلك، حاول مرة أخرى.');
|
| 851 |
});
|
| 852 |
});
|
| 853 |
}
|
|
|
|
| 862 |
uiElements.settingsForm.addEventListener('submit', (e) => {
|
| 863 |
e.preventDefault();
|
| 864 |
if (!checkAuth()) {
|
| 865 |
+
alert('من فضلك، سجل الدخول لحفظ الإعدادات.');
|
| 866 |
window.location.href = '/login';
|
| 867 |
return;
|
| 868 |
}
|
|
|
|
| 882 |
localStorage.removeItem('token');
|
| 883 |
window.location.href = '/login';
|
| 884 |
}
|
| 885 |
+
throw new Error('فشل تحديث الإعدادات');
|
| 886 |
}
|
| 887 |
return res.json();
|
| 888 |
})
|
| 889 |
.then(() => {
|
| 890 |
+
alert('تم تحديث الإعدادات بنجاح!');
|
| 891 |
uiElements.settingsModal.classList.add('hidden');
|
| 892 |
toggleSidebar(false);
|
| 893 |
})
|
| 894 |
.catch(err => {
|
| 895 |
+
console.error('خطأ في تحديث الإعدادات:', err);
|
| 896 |
+
alert('خطأ في تحديث الإعدادات: ' + err.message);
|
| 897 |
});
|
| 898 |
});
|
| 899 |
}
|
|
|
|
| 906 |
uiElements.historyToggle.innerHTML = uiElements.conversationList.classList.contains('hidden')
|
| 907 |
? `<svg class="w-5 h-5 mr-2" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 908 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M12 8v4l3 3m6-3a9 9 0 11-18 0 9 9 0 0118 0z"></path>
|
| 909 |
+
</svg>إظهار السجل`
|
| 910 |
: `<svg class="w-5 h-5 mr-2" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
|
| 911 |
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M6 18L18 6M6 6l12 12"></path>
|
| 912 |
+
</svg>إخفاء السجل`;
|
| 913 |
}
|
| 914 |
});
|
| 915 |
}
|
|
|
|
| 985 |
|
| 986 |
if (uiElements.conversationTitle) {
|
| 987 |
uiElements.conversationTitle.addEventListener('click', () => {
|
| 988 |
+
if (!checkAuth()) return alert('من فضلك، سجل الدخول لتعديل عنوان المحادثة.');
|
| 989 |
+
const newTitle = prompt('أدخل عنوان المحادثة الجديد:', currentConversationTitle || '');
|
| 990 |
if (newTitle && currentConversationId) {
|
| 991 |
updateConversationTitle(currentConversationId, newTitle);
|
| 992 |
}
|
utils/generation.py
CHANGED
|
@@ -25,10 +25,10 @@ cache = TTLCache(maxsize=int(os.getenv("QUEUE_SIZE", 100)), ttl=600)
|
|
| 25 |
|
| 26 |
# تعريف LATEX_DELIMS
|
| 27 |
LATEX_DELIMS = [
|
| 28 |
-
{"left": "$$
|
| 29 |
{"left": "$", "right": "$", "display": False},
|
| 30 |
-
{"left": "
|
| 31 |
-
{"left": "
|
| 32 |
]
|
| 33 |
|
| 34 |
# إعداد العميل لـ Hugging Face Router API
|
|
@@ -37,7 +37,7 @@ BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
|
| 37 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 38 |
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 39 |
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 40 |
-
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b") #
|
| 41 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 42 |
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "Qwen/Qwen2.5-0.5B-Instruct")
|
| 43 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
|
@@ -45,9 +45,8 @@ CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14"
|
|
| 45 |
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
|
| 46 |
TTS_MODEL = os.getenv("TTS_MODEL", "facebook/mms-tts-ara")
|
| 47 |
|
| 48 |
-
# Provider endpoints (
|
| 49 |
PROVIDER_ENDPOINTS = {
|
| 50 |
-
|
| 51 |
"fireworks-ai": "https://api.fireworks.ai/inference/v1",
|
| 52 |
"nebius": "https://api.nebius.ai/v1",
|
| 53 |
"novita": "https://api.novita.ai/v1",
|
|
@@ -78,7 +77,13 @@ def check_model_availability(model_name: str, api_key: str) -> tuple[bool, str,
|
|
| 78 |
if response.status_code == 200:
|
| 79 |
data = response.json().get("data", {})
|
| 80 |
providers = data.get("providers", [])
|
| 81 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
for provider in providers:
|
| 83 |
if provider.get("status") == "live":
|
| 84 |
provider_name = provider.get("provider")
|
|
@@ -410,7 +415,7 @@ def request_generation(
|
|
| 410 |
except Exception as e:
|
| 411 |
logger.exception(f"[Gateway] Streaming failed for model {model_name}: {e}")
|
| 412 |
if selected_api_key != BACKUP_HF_TOKEN and BACKUP_HF_TOKEN:
|
| 413 |
-
logger.warning(f"Retrying with backup token for
|
| 414 |
for chunk in request_generation(
|
| 415 |
api_key=BACKUP_HF_TOKEN,
|
| 416 |
api_base=selected_endpoint,
|
|
@@ -475,27 +480,27 @@ def request_generation(
|
|
| 475 |
buffer = ""
|
| 476 |
continue
|
| 477 |
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
|
| 500 |
if buffer and output_format == "audio":
|
| 501 |
try:
|
|
|
|
| 25 |
|
| 26 |
# تعريف LATEX_DELIMS
|
| 27 |
LATEX_DELIMS = [
|
| 28 |
+
{"left": "$$", "right": "$$", "display": True},
|
| 29 |
{"left": "$", "right": "$", "display": False},
|
| 30 |
+
{"left": "\\[", "right": "\\]", "display": True},
|
| 31 |
+
{"left": "\\(", "right": "\\)", "display": False},
|
| 32 |
]
|
| 33 |
|
| 34 |
# إعداد العميل لـ Hugging Face Router API
|
|
|
|
| 37 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 38 |
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 39 |
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 40 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b") # النموذج الرئيسي
|
| 41 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 42 |
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "Qwen/Qwen2.5-0.5B-Instruct")
|
| 43 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
|
|
|
| 45 |
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
|
| 46 |
TTS_MODEL = os.getenv("TTS_MODEL", "facebook/mms-tts-ara")
|
| 47 |
|
| 48 |
+
# Provider endpoints (بدون together)
|
| 49 |
PROVIDER_ENDPOINTS = {
|
|
|
|
| 50 |
"fireworks-ai": "https://api.fireworks.ai/inference/v1",
|
| 51 |
"nebius": "https://api.nebius.ai/v1",
|
| 52 |
"novita": "https://api.novita.ai/v1",
|
|
|
|
| 77 |
if response.status_code == 200:
|
| 78 |
data = response.json().get("data", {})
|
| 79 |
providers = data.get("providers", [])
|
| 80 |
+
# Prefer "cerebras" if available
|
| 81 |
+
for provider in providers:
|
| 82 |
+
if provider.get("provider") == "cerebras" and provider.get("status") == "live":
|
| 83 |
+
endpoint = PROVIDER_ENDPOINTS.get("cerebras", API_ENDPOINT)
|
| 84 |
+
logger.info(f"Model {model_name} is available via preferred provider cerebras at {endpoint}")
|
| 85 |
+
return True, api_key, endpoint
|
| 86 |
+
# Fallback to first live provider if cerebras not available
|
| 87 |
for provider in providers:
|
| 88 |
if provider.get("status") == "live":
|
| 89 |
provider_name = provider.get("provider")
|
|
|
|
| 415 |
except Exception as e:
|
| 416 |
logger.exception(f"[Gateway] Streaming failed for model {model_name}: {e}")
|
| 417 |
if selected_api_key != BACKUP_HF_TOKEN and BACKUP_HF_TOKEN:
|
| 418 |
+
logger.warning(f"Retrying with backup token for {model_name}")
|
| 419 |
for chunk in request_generation(
|
| 420 |
api_key=BACKUP_HF_TOKEN,
|
| 421 |
api_base=selected_endpoint,
|
|
|
|
| 480 |
buffer = ""
|
| 481 |
continue
|
| 482 |
|
| 483 |
+
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
|
| 484 |
+
if buffer:
|
| 485 |
+
cached_chunks.append(buffer)
|
| 486 |
+
yield buffer
|
| 487 |
+
buffer = ""
|
| 488 |
|
| 489 |
+
if reasoning_started and not reasoning_closed:
|
| 490 |
+
cached_chunks.append("assistantfinal")
|
| 491 |
+
yield "assistantfinal"
|
| 492 |
+
reasoning_closed = True
|
| 493 |
+
|
| 494 |
+
if not saw_visible_output:
|
| 495 |
+
cached_chunks.append("No visible output produced.")
|
| 496 |
+
yield "No visible output produced."
|
| 497 |
+
if chunk.choices[0].finish_reason == "error":
|
| 498 |
+
cached_chunks.append(f"Error: Unknown error with fallback model {fallback_model}")
|
| 499 |
+
yield f"Error: Unknown error with fallback model {fallback_model}"
|
| 500 |
+
elif chunk.choices[0].finish_reason == "length":
|
| 501 |
+
cached_chunks.append("Response truncated due to token limit. Please refine your query or request continuation.")
|
| 502 |
+
yield "Response truncated due to token limit. Please refine your query or request continuation."
|
| 503 |
+
break
|
| 504 |
|
| 505 |
if buffer and output_format == "audio":
|
| 506 |
try:
|
utils/web_search.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
from bs4 import BeautifulSoup
|
| 4 |
import logging
|
|
|
|
| 5 |
|
| 6 |
logger = logging.getLogger(__name__)
|
| 7 |
|
|
@@ -23,7 +25,8 @@ def web_search(query: str) -> str:
|
|
| 23 |
snippet = item.get("snippet", "")
|
| 24 |
link = item.get("link", "")
|
| 25 |
try:
|
| 26 |
-
|
|
|
|
| 27 |
page_response.raise_for_status()
|
| 28 |
soup = BeautifulSoup(page_response.text, "html.parser")
|
| 29 |
paragraphs = soup.find_all("p")
|
|
@@ -36,3 +39,4 @@ def web_search(query: str) -> str:
|
|
| 36 |
except Exception as e:
|
| 37 |
logger.exception("Web search failed")
|
| 38 |
return f"Web search error: {e}"
|
|
|
|
|
|
| 1 |
+
#web_search.py
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
from bs4 import BeautifulSoup
|
| 5 |
import logging
|
| 6 |
+
import time # لإضافة التأخير
|
| 7 |
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
|
|
|
| 25 |
snippet = item.get("snippet", "")
|
| 26 |
link = item.get("link", "")
|
| 27 |
try:
|
| 28 |
+
time.sleep(2) # إضافة تأخير 2 ثواني بين كل طلب
|
| 29 |
+
page_response = requests.get(link, timeout=10)
|
| 30 |
page_response.raise_for_status()
|
| 31 |
soup = BeautifulSoup(page_response.text, "html.parser")
|
| 32 |
paragraphs = soup.find_all("p")
|
|
|
|
| 39 |
except Exception as e:
|
| 40 |
logger.exception("Web search failed")
|
| 41 |
return f"Web search error: {e}"
|
| 42 |
+
|