Mark-Lasfar
commited on
Commit
·
f2cc606
1
Parent(s):
9aa52ab
Update Model
Browse files- api/endpoints.py +8 -18
- utils/generation.py +50 -90
- utils/web_search.py +7 -6
api/endpoints.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# api/endpoints.py
|
| 2 |
import os
|
| 3 |
import uuid
|
| 4 |
from fastapi import APIRouter, Depends, HTTPException, Request, status, UploadFile, File
|
|
@@ -31,11 +30,11 @@ if not BACKUP_HF_TOKEN:
|
|
| 31 |
logger.warning("BACKUP_HF_TOKEN is not set. Fallback to secondary model will not work if primary token fails.")
|
| 32 |
|
| 33 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 34 |
-
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api.
|
| 35 |
-
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 36 |
-
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b")
|
| 37 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 38 |
-
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "
|
| 39 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
| 40 |
CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14")
|
| 41 |
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
|
|
@@ -88,7 +87,6 @@ async def handle_session(request: Request):
|
|
| 88 |
# Helper function to enhance system prompt for Arabic language
|
| 89 |
def enhance_system_prompt(system_prompt: str, message: str, user: Optional[User] = None) -> str:
|
| 90 |
enhanced_prompt = system_prompt
|
| 91 |
-
# Check if the message is in Arabic
|
| 92 |
if any(0x0600 <= ord(char) <= 0x06FF for char in message):
|
| 93 |
enhanced_prompt += "\nRespond in Arabic with clear, concise, and accurate information tailored to the user's query."
|
| 94 |
if user and user.additional_info:
|
|
@@ -129,7 +127,7 @@ async def model_info():
|
|
| 129 |
{"alias": "audio", "description": "Audio transcription model (default)"},
|
| 130 |
{"alias": "tts", "description": "Text-to-speech model (default)"}
|
| 131 |
],
|
| 132 |
-
"api_base":
|
| 133 |
"fallback_api_base": FALLBACK_API_ENDPOINT,
|
| 134 |
"status": "online"
|
| 135 |
}
|
|
@@ -173,11 +171,9 @@ async def chat_endpoint(
|
|
| 173 |
db.add(user_msg)
|
| 174 |
db.commit()
|
| 175 |
|
| 176 |
-
# Use user's preferred model if set
|
| 177 |
preferred_model = user.preferred_model if user else None
|
| 178 |
model_name, api_endpoint = select_model(req.message, input_type="text", preferred_model=preferred_model)
|
| 179 |
|
| 180 |
-
# Check model availability
|
| 181 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 182 |
if not is_available:
|
| 183 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
@@ -227,7 +223,7 @@ async def chat_endpoint(
|
|
| 227 |
if not response.strip():
|
| 228 |
logger.error("Empty response generated.")
|
| 229 |
raise HTTPException(status_code=500, detail="Empty response generated from model.")
|
| 230 |
-
logger.info(f"Chat response: {response[:100]}...")
|
| 231 |
except Exception as e:
|
| 232 |
logger.error(f"Chat generation failed: {e}")
|
| 233 |
raise HTTPException(status_code=500, detail=f"Chat generation failed: {str(e)}")
|
|
@@ -280,7 +276,6 @@ async def audio_transcription_endpoint(
|
|
| 280 |
|
| 281 |
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
|
| 282 |
|
| 283 |
-
# Check model availability
|
| 284 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 285 |
if not is_available:
|
| 286 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
@@ -346,7 +341,6 @@ async def text_to_speech_endpoint(
|
|
| 346 |
|
| 347 |
model_name, api_endpoint = select_model("text to speech", input_type="tts")
|
| 348 |
|
| 349 |
-
# Check model availability
|
| 350 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 351 |
if not is_available:
|
| 352 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
@@ -400,7 +394,6 @@ async def code_endpoint(
|
|
| 400 |
preferred_model = user.preferred_model if user else None
|
| 401 |
model_name, api_endpoint = select_model(prompt, input_type="text", preferred_model=preferred_model)
|
| 402 |
|
| 403 |
-
# Check model availability
|
| 404 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 405 |
if not is_available:
|
| 406 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
@@ -473,7 +466,6 @@ async def analysis_endpoint(
|
|
| 473 |
preferred_model = user.preferred_model if user else None
|
| 474 |
model_name, api_endpoint = select_model(message, input_type="text", preferred_model=preferred_model)
|
| 475 |
|
| 476 |
-
# Check model availability
|
| 477 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 478 |
if not is_available:
|
| 479 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
@@ -561,7 +553,6 @@ async def image_analysis_endpoint(
|
|
| 561 |
preferred_model = user.preferred_model if user else None
|
| 562 |
model_name, api_endpoint = select_model("analyze image", input_type="image", preferred_model=preferred_model)
|
| 563 |
|
| 564 |
-
# Check model availability
|
| 565 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 566 |
if not is_available:
|
| 567 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
@@ -633,7 +624,7 @@ async def image_analysis_endpoint(
|
|
| 633 |
raise HTTPException(status_code=500, detail=f"Image analysis failed: {str(e)}")
|
| 634 |
|
| 635 |
@router.get("/api/test-model")
|
| 636 |
-
async def test_model(model: str = MODEL_NAME, endpoint: str =
|
| 637 |
try:
|
| 638 |
is_available, api_key, selected_endpoint = check_model_availability(model, HF_TOKEN)
|
| 639 |
if not is_available:
|
|
@@ -766,11 +757,9 @@ async def update_user_settings(
|
|
| 766 |
if not user:
|
| 767 |
raise HTTPException(status_code=401, detail="Login required")
|
| 768 |
|
| 769 |
-
# Validate preferred_model
|
| 770 |
if settings.preferred_model and settings.preferred_model not in MODEL_ALIASES:
|
| 771 |
raise HTTPException(status_code=400, detail="Invalid model alias")
|
| 772 |
|
| 773 |
-
# Update user settings
|
| 774 |
if settings.display_name is not None:
|
| 775 |
user.display_name = settings.display_name
|
| 776 |
if settings.preferred_model is not None:
|
|
@@ -801,3 +790,4 @@ async def update_user_settings(
|
|
| 801 |
"is_active": user.is_active,
|
| 802 |
"is_superuser": user.is_superuser
|
| 803 |
}}
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import uuid
|
| 3 |
from fastapi import APIRouter, Depends, HTTPException, Request, status, UploadFile, File
|
|
|
|
| 30 |
logger.warning("BACKUP_HF_TOKEN is not set. Fallback to secondary model will not work if primary token fails.")
|
| 31 |
|
| 32 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 33 |
+
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api-inference.huggingface.co/v1")
|
| 34 |
+
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co/v1")
|
| 35 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b:cerebras")
|
| 36 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 37 |
+
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "meta-llama/Llama-3-8b-chat-hf")
|
| 38 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
| 39 |
CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14")
|
| 40 |
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
|
|
|
|
| 87 |
# Helper function to enhance system prompt for Arabic language
|
| 88 |
def enhance_system_prompt(system_prompt: str, message: str, user: Optional[User] = None) -> str:
|
| 89 |
enhanced_prompt = system_prompt
|
|
|
|
| 90 |
if any(0x0600 <= ord(char) <= 0x06FF for char in message):
|
| 91 |
enhanced_prompt += "\nRespond in Arabic with clear, concise, and accurate information tailored to the user's query."
|
| 92 |
if user and user.additional_info:
|
|
|
|
| 127 |
{"alias": "audio", "description": "Audio transcription model (default)"},
|
| 128 |
{"alias": "tts", "description": "Text-to-speech model (default)"}
|
| 129 |
],
|
| 130 |
+
"api_base": API_ENDPOINT,
|
| 131 |
"fallback_api_base": FALLBACK_API_ENDPOINT,
|
| 132 |
"status": "online"
|
| 133 |
}
|
|
|
|
| 171 |
db.add(user_msg)
|
| 172 |
db.commit()
|
| 173 |
|
|
|
|
| 174 |
preferred_model = user.preferred_model if user else None
|
| 175 |
model_name, api_endpoint = select_model(req.message, input_type="text", preferred_model=preferred_model)
|
| 176 |
|
|
|
|
| 177 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 178 |
if not is_available:
|
| 179 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
|
|
| 223 |
if not response.strip():
|
| 224 |
logger.error("Empty response generated.")
|
| 225 |
raise HTTPException(status_code=500, detail="Empty response generated from model.")
|
| 226 |
+
logger.info(f"Chat response: {response[:100]}...")
|
| 227 |
except Exception as e:
|
| 228 |
logger.error(f"Chat generation failed: {e}")
|
| 229 |
raise HTTPException(status_code=500, detail=f"Chat generation failed: {str(e)}")
|
|
|
|
| 276 |
|
| 277 |
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
|
| 278 |
|
|
|
|
| 279 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 280 |
if not is_available:
|
| 281 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
|
|
| 341 |
|
| 342 |
model_name, api_endpoint = select_model("text to speech", input_type="tts")
|
| 343 |
|
|
|
|
| 344 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 345 |
if not is_available:
|
| 346 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
|
|
| 394 |
preferred_model = user.preferred_model if user else None
|
| 395 |
model_name, api_endpoint = select_model(prompt, input_type="text", preferred_model=preferred_model)
|
| 396 |
|
|
|
|
| 397 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 398 |
if not is_available:
|
| 399 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
|
|
| 466 |
preferred_model = user.preferred_model if user else None
|
| 467 |
model_name, api_endpoint = select_model(message, input_type="text", preferred_model=preferred_model)
|
| 468 |
|
|
|
|
| 469 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 470 |
if not is_available:
|
| 471 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
|
|
| 553 |
preferred_model = user.preferred_model if user else None
|
| 554 |
model_name, api_endpoint = select_model("analyze image", input_type="image", preferred_model=preferred_model)
|
| 555 |
|
|
|
|
| 556 |
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
|
| 557 |
if not is_available:
|
| 558 |
logger.error(f"Model {model_name} is not available at {api_endpoint}")
|
|
|
|
| 624 |
raise HTTPException(status_code=500, detail=f"Image analysis failed: {str(e)}")
|
| 625 |
|
| 626 |
@router.get("/api/test-model")
|
| 627 |
+
async def test_model(model: str = MODEL_NAME, endpoint: str = API_ENDPOINT):
|
| 628 |
try:
|
| 629 |
is_available, api_key, selected_endpoint = check_model_availability(model, HF_TOKEN)
|
| 630 |
if not is_available:
|
|
|
|
| 757 |
if not user:
|
| 758 |
raise HTTPException(status_code=401, detail="Login required")
|
| 759 |
|
|
|
|
| 760 |
if settings.preferred_model and settings.preferred_model not in MODEL_ALIASES:
|
| 761 |
raise HTTPException(status_code=400, detail="Invalid model alias")
|
| 762 |
|
|
|
|
| 763 |
if settings.display_name is not None:
|
| 764 |
user.display_name = settings.display_name
|
| 765 |
if settings.preferred_model is not None:
|
|
|
|
| 790 |
"is_active": user.is_active,
|
| 791 |
"is_superuser": user.is_superuser
|
| 792 |
}}
|
| 793 |
+
|
utils/generation.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# utils/generation.py
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
import json
|
|
@@ -31,40 +30,23 @@ LATEX_DELIMS = [
|
|
| 31 |
{"left": "\\(", "right": "\\)", "display": False},
|
| 32 |
]
|
| 33 |
|
| 34 |
-
# إعداد العميل لـ Hugging Face
|
| 35 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 36 |
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
| 37 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 38 |
-
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 39 |
-
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co")
|
| 40 |
-
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b")
|
| 41 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 42 |
-
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "
|
| 43 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
| 44 |
CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14")
|
| 45 |
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
|
| 46 |
TTS_MODEL = os.getenv("TTS_MODEL", "facebook/mms-tts-ara")
|
| 47 |
|
| 48 |
-
#
|
| 49 |
PROVIDER_ENDPOINTS = {
|
| 50 |
-
"
|
| 51 |
-
"nebius": "https://api.nebius.ai/v1",
|
| 52 |
-
"novita": "https://api.novita.ai/v1",
|
| 53 |
-
"groq": "https://api.groq.com/openai/v1",
|
| 54 |
-
"cerebras": "https://api.cerebras.ai/v1",
|
| 55 |
-
"hyperbolic": "https://api.hyperbolic.xyz/v1",
|
| 56 |
-
"nscale": "https://api.nscale.ai/v1"
|
| 57 |
-
}
|
| 58 |
-
|
| 59 |
-
# Model alias mapping
|
| 60 |
-
MODEL_ALIASES = {
|
| 61 |
-
"advanced": MODEL_NAME,
|
| 62 |
-
"standard": SECONDARY_MODEL_NAME,
|
| 63 |
-
"light": TERTIARY_MODEL_NAME,
|
| 64 |
-
"image_base": CLIP_BASE_MODEL,
|
| 65 |
-
"image_advanced": CLIP_LARGE_MODEL,
|
| 66 |
-
"audio": ASR_MODEL,
|
| 67 |
-
"tts": TTS_MODEL
|
| 68 |
}
|
| 69 |
|
| 70 |
def check_model_availability(model_name: str, api_key: str) -> tuple[bool, str, str]:
|
|
@@ -75,23 +57,8 @@ def check_model_availability(model_name: str, api_key: str) -> tuple[bool, str,
|
|
| 75 |
timeout=30
|
| 76 |
)
|
| 77 |
if response.status_code == 200:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Prefer "cerebras" if available
|
| 81 |
-
for provider in providers:
|
| 82 |
-
if provider.get("provider") == "cerebras" and provider.get("status") == "live":
|
| 83 |
-
endpoint = PROVIDER_ENDPOINTS.get("cerebras", API_ENDPOINT)
|
| 84 |
-
logger.info(f"Model {model_name} is available via preferred provider cerebras at {endpoint}")
|
| 85 |
-
return True, api_key, endpoint
|
| 86 |
-
# Fallback to first live provider if cerebras not available
|
| 87 |
-
for provider in providers:
|
| 88 |
-
if provider.get("status") == "live":
|
| 89 |
-
provider_name = provider.get("provider")
|
| 90 |
-
endpoint = PROVIDER_ENDPOINTS.get(provider_name, API_ENDPOINT)
|
| 91 |
-
logger.info(f"Model {model_name} is available via provider {provider_name} at {endpoint}")
|
| 92 |
-
return True, api_key, endpoint
|
| 93 |
-
logger.error(f"No live providers found for model {model_name}")
|
| 94 |
-
return False, api_key, API_ENDPOINT
|
| 95 |
elif response.status_code == 429 and BACKUP_HF_TOKEN and api_key != BACKUP_HF_TOKEN:
|
| 96 |
logger.warning(f"Rate limit reached for token {api_key}. Switching to backup token.")
|
| 97 |
return check_model_availability(model_name, BACKUP_HF_TOKEN)
|
|
@@ -105,7 +72,6 @@ def check_model_availability(model_name: str, api_key: str) -> tuple[bool, str,
|
|
| 105 |
return False, api_key, API_ENDPOINT
|
| 106 |
|
| 107 |
def select_model(query: str, input_type: str = "text", preferred_model: Optional[str] = None) -> tuple[str, str]:
|
| 108 |
-
# If user has a preferred model, use it unless the input type requires a specific model
|
| 109 |
if preferred_model and preferred_model in MODEL_ALIASES:
|
| 110 |
model_name = MODEL_ALIASES[preferred_model]
|
| 111 |
is_available, _, endpoint = check_model_availability(model_name, HF_TOKEN)
|
|
@@ -114,15 +80,12 @@ def select_model(query: str, input_type: str = "text", preferred_model: Optional
|
|
| 114 |
return model_name, endpoint
|
| 115 |
|
| 116 |
query_lower = query.lower()
|
| 117 |
-
# دعم الصوت
|
| 118 |
if input_type == "audio" or any(keyword in query_lower for keyword in ["voice", "audio", "speech", "صوت", "تحويل صوت"]):
|
| 119 |
logger.info(f"Selected {ASR_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for audio input")
|
| 120 |
return ASR_MODEL, FALLBACK_API_ENDPOINT
|
| 121 |
-
# دعم تحويل النص إلى صوت
|
| 122 |
if any(keyword in query_lower for keyword in ["text-to-speech", "tts", "تحويل نص إلى صوت"]) or input_type == "tts":
|
| 123 |
logger.info(f"Selected {TTS_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for text-to-speech")
|
| 124 |
return TTS_MODEL, FALLBACK_API_ENDPOINT
|
| 125 |
-
# نماذج CLIP للصور
|
| 126 |
image_patterns = [
|
| 127 |
r"\bimage\b", r"\bpicture\b", r"\bphoto\b", r"\bvisual\b", r"\bصورة\b", r"\bتحليل\s+صورة\b",
|
| 128 |
r"\bimage\s+analysis\b", r"\bimage\s+classification\b", r"\bimage\s+description\b"
|
|
@@ -131,7 +94,6 @@ def select_model(query: str, input_type: str = "text", preferred_model: Optional
|
|
| 131 |
if re.search(pattern, query_lower, re.IGNORECASE):
|
| 132 |
logger.info(f"Selected {CLIP_BASE_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for image-related query: {query}")
|
| 133 |
return CLIP_BASE_MODEL, FALLBACK_API_ENDPOINT
|
| 134 |
-
# اختيار النموذج بناءً على توفره
|
| 135 |
available_models = [
|
| 136 |
(MODEL_NAME, API_ENDPOINT),
|
| 137 |
(SECONDARY_MODEL_NAME, FALLBACK_API_ENDPOINT),
|
|
@@ -188,8 +150,8 @@ def request_generation(
|
|
| 188 |
client = OpenAI(api_key=selected_api_key, base_url=selected_endpoint, timeout=120.0)
|
| 189 |
task_type = "general"
|
| 190 |
enhanced_system_prompt = system_prompt
|
|
|
|
| 191 |
|
| 192 |
-
# معالجة الصوت (ASR)
|
| 193 |
if model_name == ASR_MODEL and audio_data:
|
| 194 |
task_type = "audio_transcription"
|
| 195 |
try:
|
|
@@ -212,7 +174,6 @@ def request_generation(
|
|
| 212 |
yield f"Error: Audio transcription failed: {e}"
|
| 213 |
return
|
| 214 |
|
| 215 |
-
# معالجة تحويل النص إلى صوت (TTS)
|
| 216 |
if model_name == TTS_MODEL or output_format == "audio":
|
| 217 |
task_type = "text_to_speech"
|
| 218 |
try:
|
|
@@ -232,7 +193,6 @@ def request_generation(
|
|
| 232 |
yield f"Error: Text-to-speech failed: {e}"
|
| 233 |
return
|
| 234 |
|
| 235 |
-
# معالجة الصور
|
| 236 |
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL] and image_data:
|
| 237 |
task_type = "image_analysis"
|
| 238 |
try:
|
|
@@ -263,27 +223,26 @@ def request_generation(
|
|
| 263 |
yield f"Error: Image analysis failed: {e}"
|
| 264 |
return
|
| 265 |
|
| 266 |
-
# تحسين system_prompt بناءً على نوع المهمة
|
| 267 |
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL]:
|
| 268 |
task_type = "image"
|
| 269 |
-
enhanced_system_prompt = f"{system_prompt}\nYou are an expert in image analysis and description. Provide detailed descriptions, classifications, or analysis of images based on the query.
|
| 270 |
elif any(keyword in message.lower() for keyword in ["code", "programming", "python", "javascript", "react", "django", "flask"]):
|
| 271 |
task_type = "code"
|
| 272 |
-
enhanced_system_prompt = f"{system_prompt}\nYou are an expert programmer. Provide accurate, well-commented code with comprehensive examples and detailed explanations.
|
| 273 |
elif any(keyword in message.lower() for keyword in ["analyze", "analysis", "تحليل"]):
|
| 274 |
task_type = "analysis"
|
| 275 |
-
enhanced_system_prompt = f"{system_prompt}\nProvide detailed analysis with step-by-step reasoning, examples, and data-driven insights.
|
| 276 |
elif any(keyword in message.lower() for keyword in ["review", "مراجعة"]):
|
| 277 |
task_type = "review"
|
| 278 |
-
enhanced_system_prompt = f"{system_prompt}\nReview the provided content thoroughly, identify issues, and suggest improvements with detailed explanations.
|
| 279 |
elif any(keyword in message.lower() for keyword in ["publish", "نشر"]):
|
| 280 |
task_type = "publish"
|
| 281 |
-
enhanced_system_prompt = f"{system_prompt}\nPrepare content for publishing, ensuring clarity, professionalism, and adherence to best practices.
|
| 282 |
else:
|
| 283 |
-
enhanced_system_prompt = f"{system_prompt}\nFor general queries, provide comprehensive, detailed responses with examples and explanations where applicable.
|
| 284 |
|
| 285 |
if len(message.split()) < 5:
|
| 286 |
-
enhanced_system_prompt += "\nEven for short or general queries, provide a detailed, in-depth response
|
| 287 |
|
| 288 |
logger.info(f"Task type detected: {task_type}")
|
| 289 |
input_messages: List[dict] = [{"role": "system", "content": enhanced_system_prompt}]
|
|
@@ -323,7 +282,6 @@ def request_generation(
|
|
| 323 |
saw_visible_output = False
|
| 324 |
last_tool_name = None
|
| 325 |
last_tool_args = None
|
| 326 |
-
buffer = ""
|
| 327 |
|
| 328 |
for chunk in stream:
|
| 329 |
if chunk.choices[0].delta.content:
|
|
@@ -372,7 +330,7 @@ def request_generation(
|
|
| 372 |
reasoning_closed = True
|
| 373 |
|
| 374 |
if not saw_visible_output:
|
| 375 |
-
msg = "I attempted to call a tool, but tools aren't executed in this environment
|
| 376 |
if last_tool_name:
|
| 377 |
try:
|
| 378 |
args_text = json.dumps(last_tool_args, ensure_ascii=False, default=str)
|
|
@@ -386,15 +344,15 @@ def request_generation(
|
|
| 386 |
cached_chunks.append(f"Error: Unknown error")
|
| 387 |
yield f"Error: Unknown error"
|
| 388 |
elif chunk.choices[0].finish_reason == "length":
|
| 389 |
-
cached_chunks.append("Response truncated due to token limit.
|
| 390 |
-
yield "Response truncated due to token limit.
|
| 391 |
break
|
| 392 |
|
| 393 |
if buffer:
|
| 394 |
cached_chunks.append(buffer)
|
| 395 |
yield buffer
|
| 396 |
|
| 397 |
-
if output_format == "audio"
|
| 398 |
try:
|
| 399 |
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 400 |
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
|
@@ -413,7 +371,7 @@ def request_generation(
|
|
| 413 |
cache[cache_key] = cached_chunks
|
| 414 |
|
| 415 |
except Exception as e:
|
| 416 |
-
logger.
|
| 417 |
if selected_api_key != BACKUP_HF_TOKEN and BACKUP_HF_TOKEN:
|
| 418 |
logger.warning(f"Retrying with backup token for {model_name}")
|
| 419 |
for chunk in request_generation(
|
|
@@ -455,6 +413,7 @@ def request_generation(
|
|
| 455 |
tools=[],
|
| 456 |
tool_choice="none",
|
| 457 |
)
|
|
|
|
| 458 |
for chunk in stream:
|
| 459 |
if chunk.choices[0].delta.content:
|
| 460 |
content = chunk.choices[0].delta.content
|
|
@@ -480,27 +439,27 @@ def request_generation(
|
|
| 480 |
buffer = ""
|
| 481 |
continue
|
| 482 |
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
if reasoning_started and not reasoning_closed:
|
| 490 |
-
cached_chunks.append("assistantfinal")
|
| 491 |
-
yield "assistantfinal"
|
| 492 |
-
reasoning_closed = True
|
| 493 |
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
|
| 505 |
if buffer and output_format == "audio":
|
| 506 |
try:
|
|
@@ -521,7 +480,7 @@ def request_generation(
|
|
| 521 |
cache[cache_key] = cached_chunks
|
| 522 |
|
| 523 |
except Exception as e2:
|
| 524 |
-
logger.
|
| 525 |
try:
|
| 526 |
is_available, selected_api_key, selected_endpoint = check_model_availability(TERTIARY_MODEL_NAME, selected_api_key)
|
| 527 |
if not is_available:
|
|
@@ -537,6 +496,7 @@ def request_generation(
|
|
| 537 |
tools=[],
|
| 538 |
tool_choice="none",
|
| 539 |
)
|
|
|
|
| 540 |
for chunk in stream:
|
| 541 |
if chunk.choices[0].delta.content:
|
| 542 |
content = chunk.choices[0].delta.content
|
|
@@ -559,8 +519,8 @@ def request_generation(
|
|
| 559 |
cached_chunks.append(f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}")
|
| 560 |
yield f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}"
|
| 561 |
elif chunk.choices[0].finish_reason == "length":
|
| 562 |
-
cached_chunks.append("Response truncated due to token limit.
|
| 563 |
-
yield "Response truncated due to token limit.
|
| 564 |
break
|
| 565 |
if buffer and output_format == "audio":
|
| 566 |
try:
|
|
@@ -579,8 +539,8 @@ def request_generation(
|
|
| 579 |
yield f"Error: Text-to-speech conversion failed: {e}"
|
| 580 |
cache[cache_key] = cached_chunks
|
| 581 |
except Exception as e3:
|
| 582 |
-
logger.
|
| 583 |
-
yield f"Error: Failed to load all models: Primary ({model_name}), Secondary ({fallback_model}), Tertiary ({TERTIARY_MODEL_NAME}).
|
| 584 |
return
|
| 585 |
else:
|
| 586 |
yield f"Error: Failed to load model {model_name}: {e}"
|
|
@@ -634,7 +594,7 @@ def generate(message, history, system_prompt, temperature, reasoning_effort, ena
|
|
| 634 |
"type": "function",
|
| 635 |
"function": {
|
| 636 |
"name": "code_generation",
|
| 637 |
-
"description": "Generate or modify code for various frameworks
|
| 638 |
"parameters": {
|
| 639 |
"type": "object",
|
| 640 |
"properties": {
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
import json
|
|
|
|
| 30 |
{"left": "\\(", "right": "\\)", "display": False},
|
| 31 |
]
|
| 32 |
|
| 33 |
+
# إعداد العميل لـ Hugging Face API
|
| 34 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 35 |
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
| 36 |
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
|
| 37 |
+
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api-inference.huggingface.co/v1")
|
| 38 |
+
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co/v1")
|
| 39 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b:cerebras")
|
| 40 |
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 41 |
+
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "meta-llama/Llama-3-8b-chat-hf") # استبدال Qwen بنموذج متاح
|
| 42 |
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
|
| 43 |
CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14")
|
| 44 |
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
|
| 45 |
TTS_MODEL = os.getenv("TTS_MODEL", "facebook/mms-tts-ara")
|
| 46 |
|
| 47 |
+
# تعطيل PROVIDER_ENDPOINTS لأننا بنستخدم Hugging Face فقط
|
| 48 |
PROVIDER_ENDPOINTS = {
|
| 49 |
+
"huggingface": API_ENDPOINT # استخدام Hugging Face فقط
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
}
|
| 51 |
|
| 52 |
def check_model_availability(model_name: str, api_key: str) -> tuple[bool, str, str]:
|
|
|
|
| 57 |
timeout=30
|
| 58 |
)
|
| 59 |
if response.status_code == 200:
|
| 60 |
+
logger.info(f"Model {model_name} is available at {API_ENDPOINT}")
|
| 61 |
+
return True, api_key, API_ENDPOINT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
elif response.status_code == 429 and BACKUP_HF_TOKEN and api_key != BACKUP_HF_TOKEN:
|
| 63 |
logger.warning(f"Rate limit reached for token {api_key}. Switching to backup token.")
|
| 64 |
return check_model_availability(model_name, BACKUP_HF_TOKEN)
|
|
|
|
| 72 |
return False, api_key, API_ENDPOINT
|
| 73 |
|
| 74 |
def select_model(query: str, input_type: str = "text", preferred_model: Optional[str] = None) -> tuple[str, str]:
|
|
|
|
| 75 |
if preferred_model and preferred_model in MODEL_ALIASES:
|
| 76 |
model_name = MODEL_ALIASES[preferred_model]
|
| 77 |
is_available, _, endpoint = check_model_availability(model_name, HF_TOKEN)
|
|
|
|
| 80 |
return model_name, endpoint
|
| 81 |
|
| 82 |
query_lower = query.lower()
|
|
|
|
| 83 |
if input_type == "audio" or any(keyword in query_lower for keyword in ["voice", "audio", "speech", "صوت", "تحويل صوت"]):
|
| 84 |
logger.info(f"Selected {ASR_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for audio input")
|
| 85 |
return ASR_MODEL, FALLBACK_API_ENDPOINT
|
|
|
|
| 86 |
if any(keyword in query_lower for keyword in ["text-to-speech", "tts", "تحويل نص إلى صوت"]) or input_type == "tts":
|
| 87 |
logger.info(f"Selected {TTS_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for text-to-speech")
|
| 88 |
return TTS_MODEL, FALLBACK_API_ENDPOINT
|
|
|
|
| 89 |
image_patterns = [
|
| 90 |
r"\bimage\b", r"\bpicture\b", r"\bphoto\b", r"\bvisual\b", r"\bصورة\b", r"\bتحليل\s+صورة\b",
|
| 91 |
r"\bimage\s+analysis\b", r"\bimage\s+classification\b", r"\bimage\s+description\b"
|
|
|
|
| 94 |
if re.search(pattern, query_lower, re.IGNORECASE):
|
| 95 |
logger.info(f"Selected {CLIP_BASE_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for image-related query: {query}")
|
| 96 |
return CLIP_BASE_MODEL, FALLBACK_API_ENDPOINT
|
|
|
|
| 97 |
available_models = [
|
| 98 |
(MODEL_NAME, API_ENDPOINT),
|
| 99 |
(SECONDARY_MODEL_NAME, FALLBACK_API_ENDPOINT),
|
|
|
|
| 150 |
client = OpenAI(api_key=selected_api_key, base_url=selected_endpoint, timeout=120.0)
|
| 151 |
task_type = "general"
|
| 152 |
enhanced_system_prompt = system_prompt
|
| 153 |
+
buffer = "" # تعريف buffer هنا لتجنب UnboundLocalError
|
| 154 |
|
|
|
|
| 155 |
if model_name == ASR_MODEL and audio_data:
|
| 156 |
task_type = "audio_transcription"
|
| 157 |
try:
|
|
|
|
| 174 |
yield f"Error: Audio transcription failed: {e}"
|
| 175 |
return
|
| 176 |
|
|
|
|
| 177 |
if model_name == TTS_MODEL or output_format == "audio":
|
| 178 |
task_type = "text_to_speech"
|
| 179 |
try:
|
|
|
|
| 193 |
yield f"Error: Text-to-speech failed: {e}"
|
| 194 |
return
|
| 195 |
|
|
|
|
| 196 |
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL] and image_data:
|
| 197 |
task_type = "image_analysis"
|
| 198 |
try:
|
|
|
|
| 223 |
yield f"Error: Image analysis failed: {e}"
|
| 224 |
return
|
| 225 |
|
|
|
|
| 226 |
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL]:
|
| 227 |
task_type = "image"
|
| 228 |
+
enhanced_system_prompt = f"{system_prompt}\nYou are an expert in image analysis and description. Provide detailed descriptions, classifications, or analysis of images based on the query."
|
| 229 |
elif any(keyword in message.lower() for keyword in ["code", "programming", "python", "javascript", "react", "django", "flask"]):
|
| 230 |
task_type = "code"
|
| 231 |
+
enhanced_system_prompt = f"{system_prompt}\nYou are an expert programmer. Provide accurate, well-commented code with comprehensive examples and detailed explanations."
|
| 232 |
elif any(keyword in message.lower() for keyword in ["analyze", "analysis", "تحليل"]):
|
| 233 |
task_type = "analysis"
|
| 234 |
+
enhanced_system_prompt = f"{system_prompt}\nProvide detailed analysis with step-by-step reasoning, examples, and data-driven insights."
|
| 235 |
elif any(keyword in message.lower() for keyword in ["review", "مراجعة"]):
|
| 236 |
task_type = "review"
|
| 237 |
+
enhanced_system_prompt = f"{system_prompt}\nReview the provided content thoroughly, identify issues, and suggest improvements with detailed explanations."
|
| 238 |
elif any(keyword in message.lower() for keyword in ["publish", "نشر"]):
|
| 239 |
task_type = "publish"
|
| 240 |
+
enhanced_system_prompt = f"{system_prompt}\nPrepare content for publishing, ensuring clarity, professionalism, and adherence to best practices."
|
| 241 |
else:
|
| 242 |
+
enhanced_system_prompt = f"{system_prompt}\nFor general queries, provide comprehensive, detailed responses with examples and explanations where applicable."
|
| 243 |
|
| 244 |
if len(message.split()) < 5:
|
| 245 |
+
enhanced_system_prompt += "\nEven for short or general queries, provide a detailed, in-depth response."
|
| 246 |
|
| 247 |
logger.info(f"Task type detected: {task_type}")
|
| 248 |
input_messages: List[dict] = [{"role": "system", "content": enhanced_system_prompt}]
|
|
|
|
| 282 |
saw_visible_output = False
|
| 283 |
last_tool_name = None
|
| 284 |
last_tool_args = None
|
|
|
|
| 285 |
|
| 286 |
for chunk in stream:
|
| 287 |
if chunk.choices[0].delta.content:
|
|
|
|
| 330 |
reasoning_closed = True
|
| 331 |
|
| 332 |
if not saw_visible_output:
|
| 333 |
+
msg = "I attempted to call a tool, but tools aren't executed in this environment."
|
| 334 |
if last_tool_name:
|
| 335 |
try:
|
| 336 |
args_text = json.dumps(last_tool_args, ensure_ascii=False, default=str)
|
|
|
|
| 344 |
cached_chunks.append(f"Error: Unknown error")
|
| 345 |
yield f"Error: Unknown error"
|
| 346 |
elif chunk.choices[0].finish_reason == "length":
|
| 347 |
+
cached_chunks.append("Response truncated due to token limit.")
|
| 348 |
+
yield "Response truncated due to token limit."
|
| 349 |
break
|
| 350 |
|
| 351 |
if buffer:
|
| 352 |
cached_chunks.append(buffer)
|
| 353 |
yield buffer
|
| 354 |
|
| 355 |
+
if output_format == "audio":
|
| 356 |
try:
|
| 357 |
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 358 |
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
|
|
|
| 371 |
cache[cache_key] = cached_chunks
|
| 372 |
|
| 373 |
except Exception as e:
|
| 374 |
+
logger.error(f"[Gateway] Streaming failed for model {model_name}: {e}")
|
| 375 |
if selected_api_key != BACKUP_HF_TOKEN and BACKUP_HF_TOKEN:
|
| 376 |
logger.warning(f"Retrying with backup token for {model_name}")
|
| 377 |
for chunk in request_generation(
|
|
|
|
| 413 |
tools=[],
|
| 414 |
tool_choice="none",
|
| 415 |
)
|
| 416 |
+
buffer = "" # تعريف buffer للنموذج البديل
|
| 417 |
for chunk in stream:
|
| 418 |
if chunk.choices[0].delta.content:
|
| 419 |
content = chunk.choices[0].delta.content
|
|
|
|
| 439 |
buffer = ""
|
| 440 |
continue
|
| 441 |
|
| 442 |
+
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
|
| 443 |
+
if buffer:
|
| 444 |
+
cached_chunks.append(buffer)
|
| 445 |
+
yield buffer
|
| 446 |
+
buffer = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
+
if reasoning_started and not reasoning_closed:
|
| 449 |
+
cached_chunks.append("assistantfinal")
|
| 450 |
+
yield "assistantfinal"
|
| 451 |
+
reasoning_closed = True
|
| 452 |
+
|
| 453 |
+
if not saw_visible_output:
|
| 454 |
+
cached_chunks.append("No visible output produced.")
|
| 455 |
+
yield "No visible output produced."
|
| 456 |
+
if chunk.choices[0].finish_reason == "error":
|
| 457 |
+
cached_chunks.append(f"Error: Unknown error with fallback model {fallback_model}")
|
| 458 |
+
yield f"Error: Unknown error with fallback model {fallback_model}"
|
| 459 |
+
elif chunk.choices[0].finish_reason == "length":
|
| 460 |
+
cached_chunks.append("Response truncated due to token limit.")
|
| 461 |
+
yield "Response truncated due to token limit."
|
| 462 |
+
break
|
| 463 |
|
| 464 |
if buffer and output_format == "audio":
|
| 465 |
try:
|
|
|
|
| 480 |
cache[cache_key] = cached_chunks
|
| 481 |
|
| 482 |
except Exception as e2:
|
| 483 |
+
logger.error(f"[Gateway] Streaming failed for fallback model {fallback_model}: {e2}")
|
| 484 |
try:
|
| 485 |
is_available, selected_api_key, selected_endpoint = check_model_availability(TERTIARY_MODEL_NAME, selected_api_key)
|
| 486 |
if not is_available:
|
|
|
|
| 496 |
tools=[],
|
| 497 |
tool_choice="none",
|
| 498 |
)
|
| 499 |
+
buffer = "" # تعريف buffer للنموذج الثالث
|
| 500 |
for chunk in stream:
|
| 501 |
if chunk.choices[0].delta.content:
|
| 502 |
content = chunk.choices[0].delta.content
|
|
|
|
| 519 |
cached_chunks.append(f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}")
|
| 520 |
yield f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}"
|
| 521 |
elif chunk.choices[0].finish_reason == "length":
|
| 522 |
+
cached_chunks.append("Response truncated due to token limit.")
|
| 523 |
+
yield "Response truncated due to token limit."
|
| 524 |
break
|
| 525 |
if buffer and output_format == "audio":
|
| 526 |
try:
|
|
|
|
| 539 |
yield f"Error: Text-to-speech conversion failed: {e}"
|
| 540 |
cache[cache_key] = cached_chunks
|
| 541 |
except Exception as e3:
|
| 542 |
+
logger.error(f"[Gateway] Streaming failed for tertiary model {TERTIARY_MODEL_NAME}: {e3}")
|
| 543 |
+
yield f"Error: Failed to load all models: Primary ({model_name}), Secondary ({fallback_model}), Tertiary ({TERTIARY_MODEL_NAME})."
|
| 544 |
return
|
| 545 |
else:
|
| 546 |
yield f"Error: Failed to load model {model_name}: {e}"
|
|
|
|
| 594 |
"type": "function",
|
| 595 |
"function": {
|
| 596 |
"name": "code_generation",
|
| 597 |
+
"description": "Generate or modify code for various frameworks",
|
| 598 |
"parameters": {
|
| 599 |
"type": "object",
|
| 600 |
"properties": {
|
utils/web_search.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
-
#web_search.py
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
from bs4 import BeautifulSoup
|
| 5 |
import logging
|
| 6 |
-
import time
|
| 7 |
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
|
@@ -14,7 +13,10 @@ def web_search(query: str) -> str:
|
|
| 14 |
if not google_api_key or not google_cse_id:
|
| 15 |
return "Web search requires GOOGLE_API_KEY and GOOGLE_CSE_ID to be set."
|
| 16 |
url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={google_cse_id}&q={query}"
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
response.raise_for_status()
|
| 19 |
results = response.json().get("items", [])
|
| 20 |
if not results:
|
|
@@ -25,8 +27,8 @@ def web_search(query: str) -> str:
|
|
| 25 |
snippet = item.get("snippet", "")
|
| 26 |
link = item.get("link", "")
|
| 27 |
try:
|
| 28 |
-
time.sleep(2)
|
| 29 |
-
page_response = requests.get(link, timeout=10)
|
| 30 |
page_response.raise_for_status()
|
| 31 |
soup = BeautifulSoup(page_response.text, "html.parser")
|
| 32 |
paragraphs = soup.find_all("p")
|
|
@@ -39,4 +41,3 @@ def web_search(query: str) -> str:
|
|
| 39 |
except Exception as e:
|
| 40 |
logger.exception("Web search failed")
|
| 41 |
return f"Web search error: {e}"
|
| 42 |
-
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
from bs4 import BeautifulSoup
|
| 4 |
import logging
|
| 5 |
+
import time
|
| 6 |
|
| 7 |
logger = logging.getLogger(__name__)
|
| 8 |
|
|
|
|
| 13 |
if not google_api_key or not google_cse_id:
|
| 14 |
return "Web search requires GOOGLE_API_KEY and GOOGLE_CSE_ID to be set."
|
| 15 |
url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={google_cse_id}&q={query}"
|
| 16 |
+
headers = {
|
| 17 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
| 18 |
+
}
|
| 19 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 20 |
response.raise_for_status()
|
| 21 |
results = response.json().get("items", [])
|
| 22 |
if not results:
|
|
|
|
| 27 |
snippet = item.get("snippet", "")
|
| 28 |
link = item.get("link", "")
|
| 29 |
try:
|
| 30 |
+
time.sleep(2)
|
| 31 |
+
page_response = requests.get(link, headers=headers, timeout=10)
|
| 32 |
page_response.raise_for_status()
|
| 33 |
soup = BeautifulSoup(page_response.text, "html.parser")
|
| 34 |
paragraphs = soup.find_all("p")
|
|
|
|
| 41 |
except Exception as e:
|
| 42 |
logger.exception("Web search failed")
|
| 43 |
return f"Web search error: {e}"
|
|
|