--- title: MGZon Chatbot emoji: "🤖" colorFrom: "blue" colorTo: "green" sdk: docker app_file: main.py pinned: false --- # MGZON-AI A versatile chatbot powered by MGZON/Veltrix for MGZon queries. Supports code generation, analysis, review, web search, and MGZon-specific queries. Licensed under Apache 2.0. --- library_name: transformers license: apache-2.0 🌐 **Live Demo** [Live Demo](https://huggingface.co/spaces/MGZON/mgzon-app) base_model: MGZON/Veltrix tags: - generated_from_trainer model-index: - name: mgzon-flan-t5-base results: [] --- # MGZON/Veltrix This model is a fine-tuned version of [MGZON/Veltrix](https://huggingface.co/MGZON/Veltrix) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Features - **Text Queries**: Ask anything and get detailed responses. - **Audio Input/Output**: Record audio directly or convert text to speech. - **Image Analysis**: Capture images from webcam or upload for analysis. - **Web Search**: Enable DeepSearch for real-time web context. - **API Support**: Use endpoints like `/api/chat`, `/api/audio-transcription`, `/api/text-to-speech`, `/api/image-analysis`. ## Setup 1. Add `HF_TOKEN` and `BACKUP_HF_TOKEN` as Secrets in Space settings. 2. Add `GOOGLE_API_KEY` and `GOOGLE_CSE_ID` for web search (optional). 3. Set `PORT=7860`, `QUEUE_SIZE=80`, `CONCURRENCY_LIMIT=20` as Variables. 4. Ensure `requirements.txt` and `Dockerfile` are configured correctly. ## Usage Access the app at `/gradio` or use API endpoints. Examples: - **Text**: "Explain AI history." - **Audio**: Record audio for transcription. - **Image**: Capture or upload an image for analysis. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2456 | 1.0 | 1488 | nan | | 0.0888 | 2.0 | 2976 | nan | | 15.9533 | 3.0 | 4464 | nan | | 0.1136 | 4.0 | 5952 | nan | | 0.0626 | 5.0 | 7440 | nan | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4