Spaces:
Runtime error
Runtime error
minor
Browse files- .gitignore +4 -1
- app.py +83 -25
- t2v_enhanced/model_func.py +22 -6
.gitignore
CHANGED
|
@@ -14,4 +14,7 @@ t2v_enhanced/logs
|
|
| 14 |
t2v_enhanced/slurm_logs
|
| 15 |
t2v_enhanced/lightning_logs
|
| 16 |
t2v_enhanced/results
|
| 17 |
-
t2v_enhanced/gradio_output
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
t2v_enhanced/slurm_logs
|
| 15 |
t2v_enhanced/lightning_logs
|
| 16 |
t2v_enhanced/results
|
| 17 |
+
t2v_enhanced/gradio_output
|
| 18 |
+
gradio_output/
|
| 19 |
+
lightning_logs/
|
| 20 |
+
t2v_enhanced/
|
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import argparse
|
|
| 5 |
import datetime
|
| 6 |
from pathlib import Path
|
| 7 |
import torch
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
import tempfile
|
| 10 |
import yaml
|
|
@@ -40,7 +41,10 @@ cfg_v2v = {'downscale': 1, 'upscale_size': (1280, 720), 'model_id': 'damo/Video-
|
|
| 40 |
# ----- Initialization -----
|
| 41 |
# --------------------------
|
| 42 |
ms_model = init_modelscope(device)
|
| 43 |
-
# zs_model = init_zeroscope(device)
|
|
|
|
|
|
|
|
|
|
| 44 |
stream_cli, stream_model = init_streamingt2v_model(ckpt_file_streaming_t2v, result_fol)
|
| 45 |
msxl_model = init_v2v_model(cfg_v2v)
|
| 46 |
|
|
@@ -50,7 +54,8 @@ inference_generator = torch.Generator(device="cuda")
|
|
| 50 |
# -------------------------
|
| 51 |
# ----- Functionality -----
|
| 52 |
# -------------------------
|
| 53 |
-
|
|
|
|
| 54 |
now = datetime.datetime.now()
|
| 55 |
name = prompt[:100].replace(" ", "_") + "_" + str(now.time()).replace(":", "_").replace(".", "_")
|
| 56 |
|
|
@@ -59,18 +64,59 @@ def generate(prompt, num_frames, image, model_name_stage1, model_name_stage2, n_
|
|
| 59 |
else:
|
| 60 |
num_frames = int(num_frames.split(" ")[0])
|
| 61 |
|
| 62 |
-
n_autoreg_gen = num_frames
|
| 63 |
|
| 64 |
inference_generator.manual_seed(seed)
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
video_path = opj(where_to_log, name+".mp4")
|
| 68 |
return video_path
|
| 69 |
|
| 70 |
-
def enhance(prompt, input_to_enhance):
|
|
|
|
|
|
|
| 71 |
encoded_video = video2video(prompt, input_to_enhance, result_fol, cfg_v2v, msxl_model)
|
| 72 |
return encoded_video
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# --------------------------
|
| 76 |
# ----- Gradio-Demo UI -----
|
|
@@ -117,30 +163,32 @@ with gr.Blocks() as demo:
|
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column():
|
| 119 |
with gr.Row():
|
| 120 |
-
num_frames = gr.Dropdown(["24", "32", "40", "48", "56", "80 -
|
| 121 |
with gr.Row():
|
| 122 |
prompt_stage1 = gr.Textbox(label='Textual Prompt', placeholder="Ex: Dog running on the street.")
|
| 123 |
with gr.Row():
|
| 124 |
-
image_stage1 = gr.Image(label='Image Prompt (
|
| 125 |
with gr.Column():
|
| 126 |
video_stage1 = gr.Video(label='Long Video Preview', show_label=True, interactive=False, scale=2, show_download_button=True)
|
| 127 |
with gr.Row():
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column():
|
| 132 |
with gr.Accordion('Advanced options', open=False):
|
| 133 |
model_name_stage1 = gr.Dropdown(
|
| 134 |
-
choices=["
|
| 135 |
-
label="Base Model
|
| 136 |
-
|
| 137 |
)
|
| 138 |
model_name_stage2 = gr.Dropdown(
|
| 139 |
-
choices=["
|
| 140 |
-
label="Enhancement Model
|
| 141 |
-
|
| 142 |
)
|
| 143 |
-
n_prompt = gr.Textbox(label="Optional Negative Prompt", value='')
|
| 144 |
seed = gr.Slider(label='Seed', minimum=0, maximum=65536, value=33,step=1,)
|
| 145 |
|
| 146 |
t = gr.Slider(label="Timesteps", minimum=0, maximum=100, value=50, step=1,)
|
|
@@ -148,9 +196,25 @@ with gr.Blocks() as demo:
|
|
| 148 |
|
| 149 |
with gr.Column():
|
| 150 |
with gr.Row():
|
| 151 |
-
video_stage2 = gr.Video(label='
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
'''
|
| 155 |
'''
|
| 156 |
gr.HTML(
|
|
@@ -174,12 +238,6 @@ with gr.Blocks() as demo:
|
|
| 174 |
</div>
|
| 175 |
""")
|
| 176 |
|
| 177 |
-
inputs_t2v = [prompt_stage1, num_frames, image_stage1, model_name_stage1, model_name_stage2, n_prompt, seed, t, image_guidance]
|
| 178 |
-
run_button_stage1.click(fn=generate, inputs=inputs_t2v, outputs=video_stage1,)
|
| 179 |
-
|
| 180 |
-
inputs_v2v = [prompt_stage1, video_stage1]
|
| 181 |
-
run_button_stage2.click(fn=enhance, inputs=inputs_v2v, outputs=video_stage2,)
|
| 182 |
-
|
| 183 |
|
| 184 |
if on_huggingspace:
|
| 185 |
demo.queue(max_size=20)
|
|
|
|
| 5 |
import datetime
|
| 6 |
from pathlib import Path
|
| 7 |
import torch
|
| 8 |
+
import spaces
|
| 9 |
import gradio as gr
|
| 10 |
import tempfile
|
| 11 |
import yaml
|
|
|
|
| 41 |
# ----- Initialization -----
|
| 42 |
# --------------------------
|
| 43 |
ms_model = init_modelscope(device)
|
| 44 |
+
# # zs_model = init_zeroscope(device)
|
| 45 |
+
ad_model = init_animatediff(device)
|
| 46 |
+
svd_model = init_svd(device)
|
| 47 |
+
sdxl_model = init_sdxl(device)
|
| 48 |
stream_cli, stream_model = init_streamingt2v_model(ckpt_file_streaming_t2v, result_fol)
|
| 49 |
msxl_model = init_v2v_model(cfg_v2v)
|
| 50 |
|
|
|
|
| 54 |
# -------------------------
|
| 55 |
# ----- Functionality -----
|
| 56 |
# -------------------------
|
| 57 |
+
@spaces.GPU
|
| 58 |
+
def generate(prompt, num_frames, image, model_name_stage1, model_name_stage2, seed, t, image_guidance, where_to_log=result_fol):
|
| 59 |
now = datetime.datetime.now()
|
| 60 |
name = prompt[:100].replace(" ", "_") + "_" + str(now.time()).replace(":", "_").replace(".", "_")
|
| 61 |
|
|
|
|
| 64 |
else:
|
| 65 |
num_frames = int(num_frames.split(" ")[0])
|
| 66 |
|
| 67 |
+
n_autoreg_gen = num_frames//8-8
|
| 68 |
|
| 69 |
inference_generator.manual_seed(seed)
|
| 70 |
+
|
| 71 |
+
if model_name_stage1 == "ModelScopeT2V (text to video)":
|
| 72 |
+
short_video = ms_short_gen(prompt, ms_model, inference_generator, t, device)
|
| 73 |
+
elif model_name_stage1 == "AnimateDiff (text to video)":
|
| 74 |
+
short_video = ad_short_gen(prompt, ad_model, inference_generator, t, device)
|
| 75 |
+
elif model_name_stage1 == "SVD (image to video)":
|
| 76 |
+
short_video = svd_short_gen(image, prompt, svd_model, sdxl_model, inference_generator, t, device)
|
| 77 |
+
|
| 78 |
+
stream_long_gen(prompt, short_video, n_autoreg_gen, seed, t, image_guidance, name, stream_cli, stream_model)
|
| 79 |
video_path = opj(where_to_log, name+".mp4")
|
| 80 |
return video_path
|
| 81 |
|
| 82 |
+
def enhance(prompt, input_to_enhance, num_frames=None, image=None, model_name_stage1=None, model_name_stage2=None, seed=33, t=50, image_guidance=9.5, result_fol=result_fol):
|
| 83 |
+
if input_to_enhance is None:
|
| 84 |
+
input_to_enhance = generate(prompt, num_frames, image, model_name_stage1, model_name_stage2, seed, t, image_guidance)
|
| 85 |
encoded_video = video2video(prompt, input_to_enhance, result_fol, cfg_v2v, msxl_model)
|
| 86 |
return encoded_video
|
| 87 |
|
| 88 |
+
def change_visibility(value):
|
| 89 |
+
if value == "SVD (image to video)":
|
| 90 |
+
return gr.Image(label='Image Prompt (if not attached then SDXL will be used to generate the starting image)', show_label=True, scale=1, show_download_button=False, interactive=True, type='pil')
|
| 91 |
+
else:
|
| 92 |
+
return gr.Image(label='Image Prompt (first select Image-to-Video model from advanced options to enable image upload)', show_label=True, scale=1, show_download_button=False, interactive=False, type='pil')
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
examples = [
|
| 96 |
+
["Camera moving in a wide bright ice cave.",
|
| 97 |
+
None, "24 - frames", None, "ModelScopeT2V (text to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 98 |
+
["Explore the coral gardens of the sea: witness the kaleidoscope of colors and shapes as coral reefs provide shelter for a myriad of marine life.",
|
| 99 |
+
None, "24 - frames", None, "ModelScopeT2V (text to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 100 |
+
["Experience the dance of jellyfish: float through mesmerizing swarms of jellyfish, pulsating with otherworldly grace and beauty.",
|
| 101 |
+
None, "24 - frames", None, "ModelScopeT2V (text to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 102 |
+
["Discover the secret language of bees: delve into the complex communication system that allows bees to coordinate their actions and navigate the world.",
|
| 103 |
+
None, "24 - frames", None, "AnimateDiff (text to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 104 |
+
["A beagle reading a paper.",
|
| 105 |
+
None, "24 - frames", None, "AnimateDiff (text to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 106 |
+
["Beautiful Paris Day and Night Hyperlapse.",
|
| 107 |
+
None, "24 - frames", None, "AnimateDiff (text to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 108 |
+
["Fishes swimming in ocean camera moving, cinematic.",
|
| 109 |
+
None, "24 - frames", "__assets__/fish.jpg", "SVD (image to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 110 |
+
["A squirrel on a table full of big nuts.",
|
| 111 |
+
None, "24 - frames", "__assets__/squirrel.jpg", "SVD (image to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 112 |
+
["Ants, beetles and centipede nest.",
|
| 113 |
+
None, "24 - frames", None, "SVD (image to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
# examples = [
|
| 117 |
+
# ["Fishes swimming in ocean camera moving, cinematic.",
|
| 118 |
+
# None, "24 - frames", "__assets__/fish.jpg", "SVD (image to video)", "MS-Vid2Vid-XL", 33, 50, 9.0],
|
| 119 |
+
# ]
|
| 120 |
|
| 121 |
# --------------------------
|
| 122 |
# ----- Gradio-Demo UI -----
|
|
|
|
| 163 |
with gr.Row():
|
| 164 |
with gr.Column():
|
| 165 |
with gr.Row():
|
| 166 |
+
num_frames = gr.Dropdown(["24 - frames", "32 - frames", "40 - frames", "48 - frames", "56 - frames", "80 - recommended to run on local GPUs", "240 - recommended to run on local GPUs", "600 - recommended to run on local GPUs", "1200 - recommended to run on local GPUs", "10000 - recommended to run on local GPUs"], label="Number of Video Frames", info="For >56 frames use local workstation!", value="24 - frames")
|
| 167 |
with gr.Row():
|
| 168 |
prompt_stage1 = gr.Textbox(label='Textual Prompt', placeholder="Ex: Dog running on the street.")
|
| 169 |
with gr.Row():
|
| 170 |
+
image_stage1 = gr.Image(label='Image Prompt (first select Image-to-Video model from advanced options to enable image upload)', show_label=True, scale=1, show_download_button=False, interactive=False, type='pil')
|
| 171 |
with gr.Column():
|
| 172 |
video_stage1 = gr.Video(label='Long Video Preview', show_label=True, interactive=False, scale=2, show_download_button=True)
|
| 173 |
with gr.Row():
|
| 174 |
+
with gr.Row():
|
| 175 |
+
run_button_stage1 = gr.Button("long Video Generation (faster preview)")
|
| 176 |
+
with gr.Row():
|
| 177 |
+
run_button_stage2 = gr.Button("long Video Generation")
|
| 178 |
|
| 179 |
with gr.Row():
|
| 180 |
with gr.Column():
|
| 181 |
with gr.Accordion('Advanced options', open=False):
|
| 182 |
model_name_stage1 = gr.Dropdown(
|
| 183 |
+
choices=["ModelScopeT2V (text to video)", "AnimateDiff (text to video)", "SVD (image to video)"],
|
| 184 |
+
label="Base Model",
|
| 185 |
+
value="ModelScopeT2V (text to video)"
|
| 186 |
)
|
| 187 |
model_name_stage2 = gr.Dropdown(
|
| 188 |
+
choices=["MS-Vid2Vid-XL"],
|
| 189 |
+
label="Enhancement Model",
|
| 190 |
+
value="MS-Vid2Vid-XL"
|
| 191 |
)
|
|
|
|
| 192 |
seed = gr.Slider(label='Seed', minimum=0, maximum=65536, value=33,step=1,)
|
| 193 |
|
| 194 |
t = gr.Slider(label="Timesteps", minimum=0, maximum=100, value=50, step=1,)
|
|
|
|
| 196 |
|
| 197 |
with gr.Column():
|
| 198 |
with gr.Row():
|
| 199 |
+
video_stage2 = gr.Video(label='Long Video', show_label=True, interactive=False, height=588, show_download_button=True)
|
| 200 |
+
|
| 201 |
+
model_name_stage1.change(fn=change_visibility, inputs=[model_name_stage1], outputs=image_stage1)
|
| 202 |
+
|
| 203 |
+
inputs_t2v = [prompt_stage1, num_frames, image_stage1, model_name_stage1, model_name_stage2, seed, t, image_guidance]
|
| 204 |
+
run_button_stage1.click(fn=generate, inputs=inputs_t2v, outputs=video_stage1,)
|
| 205 |
+
|
| 206 |
+
inputs_v2v = [prompt_stage1, video_stage1, num_frames, image_stage1, model_name_stage1, model_name_stage2, seed, t, image_guidance]
|
| 207 |
+
|
| 208 |
+
# gr.Examples(examples=examples,
|
| 209 |
+
# inputs=inputs_v2v,
|
| 210 |
+
# outputs=video_stage2,
|
| 211 |
+
# fn=enhance,
|
| 212 |
+
# run_on_click=False,
|
| 213 |
+
# # cache_examples=on_huggingspace,
|
| 214 |
+
# cache_examples=False,
|
| 215 |
+
# )
|
| 216 |
+
run_button_stage2.click(fn=enhance, inputs=inputs_v2v, outputs=video_stage2,)
|
| 217 |
+
|
| 218 |
'''
|
| 219 |
'''
|
| 220 |
gr.HTML(
|
|
|
|
| 238 |
</div>
|
| 239 |
""")
|
| 240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
if on_huggingspace:
|
| 243 |
demo.queue(max_size=20)
|
t2v_enhanced/model_func.py
CHANGED
|
@@ -51,15 +51,20 @@ def sdxl_image_gen(prompt, sdxl_model):
|
|
| 51 |
return image
|
| 52 |
|
| 53 |
def svd_short_gen(image, prompt, svd_model, sdxl_model, inference_generator, t=25, device="cuda"):
|
| 54 |
-
if image is None
|
| 55 |
image = sdxl_image_gen(prompt, sdxl_model)
|
| 56 |
image = image.resize((576, 576))
|
| 57 |
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
|
| 58 |
-
|
| 59 |
image = load_image(image)
|
| 60 |
image = resize_and_keep(image)
|
| 61 |
image = center_crop(image)
|
| 62 |
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
frames = svd_model(image, decode_chunk_size=8, generator=inference_generator).frames[0]
|
| 65 |
frames = torch.stack([transform(frame) for frame in frames])
|
|
@@ -70,9 +75,10 @@ def svd_short_gen(image, prompt, svd_model, sdxl_model, inference_generator, t=2
|
|
| 70 |
return frames
|
| 71 |
|
| 72 |
|
| 73 |
-
def stream_long_gen(prompt, short_video, n_autoreg_gen,
|
| 74 |
trainer = stream_cli.trainer
|
| 75 |
trainer.limit_predict_batches = 1
|
|
|
|
| 76 |
trainer.predict_cfg = {
|
| 77 |
"predict_dir": stream_cli.config["result_fol"].as_posix(),
|
| 78 |
"result_file_stem": result_file_stem,
|
|
@@ -93,7 +99,8 @@ def video2video(prompt, video, where_to_log, cfg_v2v, model_v2v, square=True):
|
|
| 93 |
pad = cfg_v2v['pad']
|
| 94 |
|
| 95 |
now = datetime.datetime.now()
|
| 96 |
-
|
|
|
|
| 97 |
enhanced_video_mp4 = opj(where_to_log, name+"_enhanced.mp4")
|
| 98 |
|
| 99 |
video_frames = imageio.mimread(video)
|
|
@@ -107,11 +114,20 @@ def video2video(prompt, video, where_to_log, cfg_v2v, model_v2v, square=True):
|
|
| 107 |
video = [pad_to_fit(frame, upscale_size) for frame in video]
|
| 108 |
# video = [np.array(frame) for frame in video]
|
| 109 |
|
| 110 |
-
imageio.mimsave(opj(where_to_log, '
|
| 111 |
|
| 112 |
p_input = {
|
| 113 |
-
'video_path': opj(where_to_log, '
|
| 114 |
'text': prompt
|
| 115 |
}
|
| 116 |
output_video_path = model_v2v(p_input, output_video=enhanced_video_mp4)[OutputKeys.OUTPUT_VIDEO]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
return enhanced_video_mp4
|
|
|
|
| 51 |
return image
|
| 52 |
|
| 53 |
def svd_short_gen(image, prompt, svd_model, sdxl_model, inference_generator, t=25, device="cuda"):
|
| 54 |
+
if image is None:
|
| 55 |
image = sdxl_image_gen(prompt, sdxl_model)
|
| 56 |
image = image.resize((576, 576))
|
| 57 |
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
|
| 58 |
+
elif type(image) is str:
|
| 59 |
image = load_image(image)
|
| 60 |
image = resize_and_keep(image)
|
| 61 |
image = center_crop(image)
|
| 62 |
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
|
| 63 |
+
else:
|
| 64 |
+
image = Image.fromarray(np.uint8(image))
|
| 65 |
+
image = resize_and_keep(image)
|
| 66 |
+
image = center_crop(image)
|
| 67 |
+
image = add_margin(image, 0, 224, 0, 224, (0, 0, 0))
|
| 68 |
|
| 69 |
frames = svd_model(image, decode_chunk_size=8, generator=inference_generator).frames[0]
|
| 70 |
frames = torch.stack([transform(frame) for frame in frames])
|
|
|
|
| 75 |
return frames
|
| 76 |
|
| 77 |
|
| 78 |
+
def stream_long_gen(prompt, short_video, n_autoreg_gen, seed, t, image_guidance, result_file_stem, stream_cli, stream_model):
|
| 79 |
trainer = stream_cli.trainer
|
| 80 |
trainer.limit_predict_batches = 1
|
| 81 |
+
|
| 82 |
trainer.predict_cfg = {
|
| 83 |
"predict_dir": stream_cli.config["result_fol"].as_posix(),
|
| 84 |
"result_file_stem": result_file_stem,
|
|
|
|
| 99 |
pad = cfg_v2v['pad']
|
| 100 |
|
| 101 |
now = datetime.datetime.now()
|
| 102 |
+
now = str(now.time()).replace(":", "_").replace(".", "_")
|
| 103 |
+
name = prompt[:100].replace(" ", "_") + "_" + now
|
| 104 |
enhanced_video_mp4 = opj(where_to_log, name+"_enhanced.mp4")
|
| 105 |
|
| 106 |
video_frames = imageio.mimread(video)
|
|
|
|
| 114 |
video = [pad_to_fit(frame, upscale_size) for frame in video]
|
| 115 |
# video = [np.array(frame) for frame in video]
|
| 116 |
|
| 117 |
+
imageio.mimsave(opj(where_to_log, 'temp_'+now+'.mp4'), video, fps=8)
|
| 118 |
|
| 119 |
p_input = {
|
| 120 |
+
'video_path': opj(where_to_log, 'temp_'+now+'.mp4'),
|
| 121 |
'text': prompt
|
| 122 |
}
|
| 123 |
output_video_path = model_v2v(p_input, output_video=enhanced_video_mp4)[OutputKeys.OUTPUT_VIDEO]
|
| 124 |
+
|
| 125 |
+
# Remove padding
|
| 126 |
+
video_frames = imageio.mimread(enhanced_video_mp4)
|
| 127 |
+
video_frames_square = []
|
| 128 |
+
for frame in video_frames:
|
| 129 |
+
frame = frame[:, 280:-280, :]
|
| 130 |
+
video_frames_square.append(frame)
|
| 131 |
+
imageio.mimsave(enhanced_video_mp4, video_frames_square)
|
| 132 |
+
|
| 133 |
return enhanced_video_mp4
|