Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
=======================================================
|
| 3 |
+
Comparison of LDA and PCA 2D projection of Iris dataset
|
| 4 |
+
=======================================================
|
| 5 |
+
|
| 6 |
+
The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour
|
| 7 |
+
and Virginica) with 4 attributes: sepal length, sepal width, petal length
|
| 8 |
+
and petal width.
|
| 9 |
+
|
| 10 |
+
Principal Component Analysis (PCA) applied to this data identifies the
|
| 11 |
+
combination of attributes (principal components, or directions in the
|
| 12 |
+
feature space) that account for the most variance in the data. Here we
|
| 13 |
+
plot the different samples on the 2 first principal components.
|
| 14 |
+
|
| 15 |
+
Linear Discriminant Analysis (LDA) tries to identify attributes that
|
| 16 |
+
account for the most variance *between classes*. In particular,
|
| 17 |
+
LDA, in contrast to PCA, is a supervised method, using known class labels.
|
| 18 |
+
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
import matplotlib.pyplot as plt
|
| 22 |
+
import gradio as gr
|
| 23 |
+
from sklearn import datasets
|
| 24 |
+
from sklearn.decomposition import PCA
|
| 25 |
+
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
| 26 |
+
|
| 27 |
+
# load data
|
| 28 |
+
iris = datasets.load_iris()
|
| 29 |
+
|
| 30 |
+
X = iris.data
|
| 31 |
+
y = iris.target
|
| 32 |
+
target_names = iris.target_names
|
| 33 |
+
|
| 34 |
+
# fit PCA
|
| 35 |
+
pca = PCA(n_components=2)
|
| 36 |
+
X_r = pca.fit(X).transform(X)
|
| 37 |
+
|
| 38 |
+
# fit LDA
|
| 39 |
+
lda = LinearDiscriminantAnalysis(n_components=2)
|
| 40 |
+
X_r2 = lda.fit(X, y).transform(X)
|
| 41 |
+
|
| 42 |
+
# Percentage of variance explained for each components
|
| 43 |
+
print(
|
| 44 |
+
"explained variance ratio (first two components): %s"
|
| 45 |
+
% str(pca.explained_variance_ratio_)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# save models using skop
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def plot_lda_pca():
|
| 52 |
+
|
| 53 |
+
fig = plt.figure(1, facecolor="w", figsize=(5,5))
|
| 54 |
+
colors = ["navy", "turquoise", "darkorange"]
|
| 55 |
+
lw = 2
|
| 56 |
+
|
| 57 |
+
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
|
| 58 |
+
plt.scatter(
|
| 59 |
+
X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=0.8, lw=lw, label=target_name
|
| 60 |
+
)
|
| 61 |
+
plt.legend(loc="best", shadow=False, scatterpoints=1)
|
| 62 |
+
plt.title("PCA of IRIS dataset")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
|
| 66 |
+
plt.scatter(
|
| 67 |
+
X_r2[y == i, 0], X_r2[y == i, 1], alpha=0.8, color=color, label=target_name
|
| 68 |
+
)
|
| 69 |
+
plt.legend(loc="best", shadow=False, scatterpoints=1)
|
| 70 |
+
plt.title("LDA of IRIS dataset")
|
| 71 |
+
|
| 72 |
+
return fig
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
title = "2-D projection of Iris dataset using LDA and PCA"
|
| 76 |
+
with gr.Blocks(title=title) as demo:
|
| 77 |
+
gr.Markdown(f"# {title}")
|
| 78 |
+
gr.Markdown(" This example shows how one can use Prinicipal Components Analysis (PCA) and Factor Analysis (FA) for model selection by observing the likelihood of a held-out dataset with added noise <br>"
|
| 79 |
+
" The number of samples (n_samples) will determine the number of data points to produce. <br>"
|
| 80 |
+
" The number of components (n_components) will determine the number of components each method will fit to, and will affect the likelihood of the held-out set. <br>"
|
| 81 |
+
" The number of features (n_components) determine the number of features the toy dataset X variable will have. <br>"
|
| 82 |
+
" For further details please see the sklearn docs:"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py)** <br>")
|
| 86 |
+
|
| 87 |
+
gr.Markdown(" **Dataset** : A toy dataset with corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature) . <br>")
|
| 88 |
+
gr.Markdown(" Different number of features and number of components affect how well the low rank space is recovered. <br>"
|
| 89 |
+
" Larger Depth trying to overfit and learn even the finner details of the data.<br>"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# with gr.Row():
|
| 93 |
+
# n_samples = gr.Slider(value=100, minimum=10, maximum=1000, step=10, label="n_samples")
|
| 94 |
+
# n_components = gr.Slider(value=2, minimum=1, maximum=20, step=1, label="n_components")
|
| 95 |
+
# n_features = gr.Slider(value=5, minimum=5, maximum=25, step=1, label="n_features")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# options for n_components
|
| 99 |
+
|
| 100 |
+
btn = gr.Button(value="Run")
|
| 101 |
+
btn.click(plot_lda_pca, outputs= gr.Plot(label='PCA vs LDA clustering') ) #
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
demo.launch()
|