Commit
·
7d697f7
1
Parent(s):
ca685d6
- modules/core.py +42 -20
- modules/default_pipeline.py +12 -12
modules/core.py
CHANGED
|
@@ -2,13 +2,17 @@ import random
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from comfy.sd import load_checkpoint_guess_config
|
| 6 |
-
from nodes import VAEDecode,
|
| 7 |
|
| 8 |
|
| 9 |
opCLIPTextEncode = CLIPTextEncode()
|
| 10 |
opEmptyLatentImage = EmptyLatentImage()
|
| 11 |
-
opKSamplerAdvanced = KSamplerAdvanced()
|
| 12 |
opVAEDecode = VAEDecode()
|
| 13 |
|
| 14 |
|
|
@@ -42,24 +46,42 @@ def decode_vae(vae, latent_image):
|
|
| 42 |
|
| 43 |
|
| 44 |
@torch.no_grad()
|
| 45 |
-
def
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
@torch.no_grad()
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
+
import comfy.model_management
|
| 6 |
+
import comfy.sample
|
| 7 |
+
import comfy.utils
|
| 8 |
+
import latent_preview
|
| 9 |
+
|
| 10 |
from comfy.sd import load_checkpoint_guess_config
|
| 11 |
+
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode, common_ksampler
|
| 12 |
|
| 13 |
|
| 14 |
opCLIPTextEncode = CLIPTextEncode()
|
| 15 |
opEmptyLatentImage = EmptyLatentImage()
|
|
|
|
| 16 |
opVAEDecode = VAEDecode()
|
| 17 |
|
| 18 |
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
@torch.no_grad()
|
| 49 |
+
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
| 50 |
+
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
|
| 51 |
+
|
| 52 |
+
device = comfy.model_management.get_torch_device()
|
| 53 |
+
latent_image = latent["samples"]
|
| 54 |
+
|
| 55 |
+
if disable_noise:
|
| 56 |
+
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
| 57 |
+
else:
|
| 58 |
+
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
| 59 |
+
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
|
| 60 |
+
|
| 61 |
+
noise_mask = None
|
| 62 |
+
if "noise_mask" in latent:
|
| 63 |
+
noise_mask = latent["noise_mask"]
|
| 64 |
+
|
| 65 |
+
preview_format = "JPEG"
|
| 66 |
+
if preview_format not in ["JPEG", "PNG"]:
|
| 67 |
+
preview_format = "JPEG"
|
| 68 |
+
|
| 69 |
+
previewer = latent_preview.get_previewer(device, model.model.latent_format)
|
| 70 |
+
|
| 71 |
+
pbar = comfy.utils.ProgressBar(steps)
|
| 72 |
+
|
| 73 |
+
def callback(step, x0, x, total_steps):
|
| 74 |
+
preview_bytes = None
|
| 75 |
+
if previewer:
|
| 76 |
+
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
| 77 |
+
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
| 78 |
+
|
| 79 |
+
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
| 80 |
+
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
| 81 |
+
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
|
| 82 |
+
out = latent.copy()
|
| 83 |
+
out["samples"] = samples
|
| 84 |
+
return (out, )
|
| 85 |
|
| 86 |
|
| 87 |
@torch.no_grad()
|
modules/default_pipeline.py
CHANGED
|
@@ -23,20 +23,20 @@ def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_siz
|
|
| 23 |
|
| 24 |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
|
| 25 |
|
| 26 |
-
sampled_latent = core.
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
steps=30,
|
| 32 |
)
|
| 33 |
|
| 34 |
-
sampled_latent = core.
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
steps=30,
|
| 40 |
)
|
| 41 |
|
| 42 |
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
|
|
|
|
| 23 |
|
| 24 |
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
|
| 25 |
|
| 26 |
+
sampled_latent = core.ksampler(
|
| 27 |
+
model=xl_base.unet,
|
| 28 |
+
positive=positive_conditions,
|
| 29 |
+
negative=negative_conditions,
|
| 30 |
+
latent=empty_latent,
|
| 31 |
+
steps=30, start_step=0, last_step=20, disable_noise=False, force_full_denoise=False
|
| 32 |
)
|
| 33 |
|
| 34 |
+
sampled_latent = core.ksampler(
|
| 35 |
+
model=xl_refiner.unet,
|
| 36 |
+
positive=positive_conditions_refiner,
|
| 37 |
+
negative=negative_conditions_refiner,
|
| 38 |
+
latent=sampled_latent,
|
| 39 |
+
steps=30, start_step=20, last_step=30, disable_noise=True, force_full_denoise=True
|
| 40 |
)
|
| 41 |
|
| 42 |
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
|