Spaces:
Sleeping
Sleeping
add summary topic sentiment features
Browse files- app.py +25 -15
- sentiment_analysis.py +5 -0
- summary.py +5 -0
- topic.py +5 -0
app.py
CHANGED
|
@@ -1,16 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def main(audio_file, number_of_speakers):
|
| 5 |
# Audio to Text Converter
|
| 6 |
-
text_data = transcribe(audio_file, number_of_speakers)
|
| 7 |
-
print(text_data)
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
return title, short_summary, sentiment_analysis, quality, detailed_summary
|
| 14 |
|
| 15 |
# UI Interface on the Hugging Face Page
|
| 16 |
with gr.Blocks() as demo:
|
|
@@ -23,19 +35,17 @@ with gr.Blocks() as demo:
|
|
| 23 |
btn_clear = gr.ClearButton(value="Clear", components=[audio_file, number_of_speakers])
|
| 24 |
btn_submit = gr.Button(value="Submit")
|
| 25 |
with gr.Column():
|
| 26 |
-
|
| 27 |
-
|
| 28 |
sentiment_analysis = gr.Textbox(label="Sentiment Analysis", placeholder="Sentiment Analysis for Conversation")
|
| 29 |
-
|
| 30 |
-
detailed_summary = gr.Textbox(label="Detailed Summary", placeholder="Detailed Summary for Conversation")
|
| 31 |
-
btn_submit.click(fn=main, inputs=[audio_file, number_of_speakers], outputs=[title, short_summary, sentiment_analysis, quality, detailed_summary])
|
| 32 |
gr.Markdown("## Examples")
|
| 33 |
gr.Examples(
|
| 34 |
examples=[
|
| 35 |
["./examples/sample4.wav", 2],
|
| 36 |
],
|
| 37 |
inputs=[audio_file, number_of_speakers],
|
| 38 |
-
outputs=[
|
| 39 |
fn=main,
|
| 40 |
)
|
| 41 |
gr.Markdown(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
# from transcribe import transcribe
|
| 4 |
+
from sentiment_analysis import sentiment_analyser
|
| 5 |
+
from summary import summarizer
|
| 6 |
+
from topic import topic_gen
|
| 7 |
+
|
| 8 |
+
def transcribe2():
|
| 9 |
+
response = requests.post("https://dwarkesh-whisper-speaker-recognition.hf.space/run/predict", json={
|
| 10 |
+
"data": [
|
| 11 |
+
{"name":"audio.wav","data":"data:audio/wav;base64,UklGRiQAAABXQVZFZm10IBAAAAABAAEARKwAAIhYAQACABAAZGF0YQAAAAA="},
|
| 12 |
+
2,
|
| 13 |
+
]}).json()
|
| 14 |
+
|
| 15 |
+
data = response["data"]
|
| 16 |
|
| 17 |
def main(audio_file, number_of_speakers):
|
| 18 |
# Audio to Text Converter
|
| 19 |
+
# text_data = transcribe(audio_file, number_of_speakers)
|
| 20 |
+
# print(text_data)
|
| 21 |
+
text_data = ""
|
| 22 |
+
topic = topic_gen(text_data)
|
| 23 |
+
summary = summarizer(text_data)
|
| 24 |
+
sentiment_analysis = sentiment_analyser(text_data)
|
| 25 |
+
return topic, summary, sentiment_analysis
|
|
|
|
| 26 |
|
| 27 |
# UI Interface on the Hugging Face Page
|
| 28 |
with gr.Blocks() as demo:
|
|
|
|
| 35 |
btn_clear = gr.ClearButton(value="Clear", components=[audio_file, number_of_speakers])
|
| 36 |
btn_submit = gr.Button(value="Submit")
|
| 37 |
with gr.Column():
|
| 38 |
+
topic = gr.Textbox(label="Title", placeholder="Title for Conversation")
|
| 39 |
+
summary = gr.Textbox(label="Short Summary", placeholder="Short Summary for Conversation")
|
| 40 |
sentiment_analysis = gr.Textbox(label="Sentiment Analysis", placeholder="Sentiment Analysis for Conversation")
|
| 41 |
+
btn_submit.click(fn=main, inputs=[audio_file, number_of_speakers], outputs=[topic, summary, sentiment_analysis])
|
|
|
|
|
|
|
| 42 |
gr.Markdown("## Examples")
|
| 43 |
gr.Examples(
|
| 44 |
examples=[
|
| 45 |
["./examples/sample4.wav", 2],
|
| 46 |
],
|
| 47 |
inputs=[audio_file, number_of_speakers],
|
| 48 |
+
outputs=[topic, summary, sentiment_analysis],
|
| 49 |
fn=main,
|
| 50 |
)
|
| 51 |
gr.Markdown(
|
sentiment_analysis.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
|
| 3 |
+
def sentiment_analyser(text):
|
| 4 |
+
sent = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")
|
| 5 |
+
return sent(text)
|
summary.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
|
| 3 |
+
def summarizer(text):
|
| 4 |
+
summ = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM")
|
| 5 |
+
return summ(text)
|
topic.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
|
| 3 |
+
def topic_gen(text):
|
| 4 |
+
topic = pipeline(" Text2Text Generation", model="knkarthick/TOPIC-DIALOGSUM")
|
| 5 |
+
return topic(text)
|