Spaces:
Sleeping
Sleeping
| import numpy as np | |
| from pytorch_grad_cam import GradCAM | |
| from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
| from pytorch_grad_cam.utils.image import show_cam_on_image | |
| import matplotlib.pyplot as plt | |
| def generate_gradcam(model, target_layers, images, labels, rgb_imgs): | |
| results = [] | |
| cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True) | |
| for image, label, np_image in zip(images, labels, rgb_imgs): | |
| targets = [ClassifierOutputTarget(label.item())] | |
| # You can also pass aug_smooth=True and eigen_smooth=True, to apply smoothing. | |
| grayscale_cam = cam( | |
| input_tensor=image.unsqueeze(0), targets=targets, aug_smooth=True | |
| ) | |
| # In this example grayscale_cam has only one image in the batch: | |
| grayscale_cam = grayscale_cam[0, :] | |
| visualization = show_cam_on_image( | |
| np_image / np_image.max(), grayscale_cam, use_rgb=True | |
| ) | |
| results.append(visualization) | |
| return results | |
| def visualize_gradcam(misimgs, mistgts, mispreds, classes): | |
| fig, axes = plt.subplots(len(misimgs) // 2, 2) | |
| fig.tight_layout() | |
| for ax, img, tgt, pred in zip(axes.ravel(), misimgs, mistgts, mispreds): | |
| ax.imshow(img) | |
| ax.set_title(f"{classes[tgt]} | {classes[pred]}") | |
| ax.grid(False) | |
| ax.set_axis_off() | |
| plt.show() | |
| def plot_gradcam(model, data, classes, target_layers, number_of_samples, inv_normalize=None, targets=None, transparency = 0.60, figsize=(10,10), rows=2, cols=5): | |
| fig = plt.figure(figsize=figsize) | |
| cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True) | |
| for i in range(number_of_samples): | |
| plt.subplot(rows, cols, i + 1) | |
| input_tensor = data[i][0] | |
| # Get the activations of the layer for the images | |
| grayscale_cam = cam(input_tensor=input_tensor, targets=targets) | |
| grayscale_cam = grayscale_cam[0, :] | |
| # Get back the original image | |
| img = input_tensor.squeeze(0).to('cpu') | |
| if inv_normalize is not None: | |
| img = inv_normalize(img) | |
| rgb_img = np.transpose(img, (1, 2, 0)) | |
| rgb_img = rgb_img.numpy() | |
| # Mix the activations on the original image | |
| visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency) | |
| # Display the images on the plot | |
| plt.imshow(visualization) | |
| plt.title(f"Label: {classes[data[i][1].item()]} \n Prediction: {classes[data[i][2].item()]}") | |
| plt.xticks([]) | |
| plt.yticks([]) | |