Spaces:
Sleeping
Sleeping
ravi.naik
commited on
Commit
Β·
70f7a67
1
Parent(s):
8413265
added model link into app
Browse files- README.md +526 -1
- markdown.py +1 -1
README.md
CHANGED
|
@@ -10,4 +10,529 @@ pinned: false
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# ERA-SESSION13 YoloV3 with Pytorch Lightning & Gradio
|
| 14 |
+
|
| 15 |
+
HF Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13
|
| 16 |
+
|
| 17 |
+
### Achieved:
|
| 18 |
+
1. **Training Loss: 3.680**
|
| 19 |
+
2. **Validation Loss: 4.940**
|
| 20 |
+
3. **Class accuracy: 81.601883%**
|
| 21 |
+
4. **No obj accuracy: 97.991463%**
|
| 22 |
+
5. **Obj accuracy: 75.976616%**
|
| 23 |
+
6. **MAP: 0.4366795**
|
| 24 |
+
|
| 25 |
+
### Tasks:
|
| 26 |
+
1. :heavy_check_mark: Move the code to PytorchLightning
|
| 27 |
+
2. :heavy_check_mark: Train the model to reach such that all of these are true:
|
| 28 |
+
- Class accuracy is more than 75%
|
| 29 |
+
- No Obj accuracy of more than 95%
|
| 30 |
+
- Object Accuracy of more than 70% (assuming you had to reduce the kernel numbers, else 80/98/78)
|
| 31 |
+
- Ideally trained till 40 epochs
|
| 32 |
+
3. :heavy_check_mark: Add these training features:
|
| 33 |
+
- Add multi-resolution training - the code shared trains only on one resolution 416
|
| 34 |
+
- Add Implement Mosaic Augmentation only 75% of the times
|
| 35 |
+
- Train on float16
|
| 36 |
+
- GradCam must be implemented.
|
| 37 |
+
4. :heavy_check_mark: Things that are allowed due to HW constraints:
|
| 38 |
+
- Change of batch size
|
| 39 |
+
- Change of resolution
|
| 40 |
+
- Change of OCP parameters
|
| 41 |
+
5. :heavy_check_mark: Once done:
|
| 42 |
+
- Move the app to HuggingFace Spaces
|
| 43 |
+
- Allow custom upload of images
|
| 44 |
+
- Share some samples from the existing dataset
|
| 45 |
+
- Show the GradCAM output for the image that the user uploads as well as for the samples.
|
| 46 |
+
6. :heavy_check_mark: Mention things like:
|
| 47 |
+
- classes that your model support
|
| 48 |
+
- link to the actual model
|
| 49 |
+
7. :heavy_check_mark: Assignment:
|
| 50 |
+
- Share HuggingFace App Link
|
| 51 |
+
- Share LightningCode Link on Github
|
| 52 |
+
- Share notebook link (with logs) on GitHub
|
| 53 |
+
|
| 54 |
+
### Results
|
| 55 |
+

|
| 56 |
+
|
| 57 |
+
### Gradio App
|
| 58 |
+

|
| 59 |
+

|
| 60 |
+
|
| 61 |
+
### Model Summary
|
| 62 |
+
```python
|
| 63 |
+
| Name | Type | Params
|
| 64 |
+
-------------------------------------------------------------------
|
| 65 |
+
0 | loss_fn | YoloLoss | 0
|
| 66 |
+
1 | loss_fn.mse | MSELoss | 0
|
| 67 |
+
2 | loss_fn.bce | BCEWithLogitsLoss | 0
|
| 68 |
+
3 | loss_fn.entropy | CrossEntropyLoss | 0
|
| 69 |
+
4 | loss_fn.sigmoid | Sigmoid | 0
|
| 70 |
+
5 | layers | ModuleList | 61.6 M
|
| 71 |
+
6 | layers.0 | CNNBlock | 928
|
| 72 |
+
7 | layers.0.conv | Conv2d | 864
|
| 73 |
+
8 | layers.0.bn | BatchNorm2d | 64
|
| 74 |
+
9 | layers.0.leaky | LeakyReLU | 0
|
| 75 |
+
10 | layers.1 | CNNBlock | 18.6 K
|
| 76 |
+
11 | layers.1.conv | Conv2d | 18.4 K
|
| 77 |
+
12 | layers.1.bn | BatchNorm2d | 128
|
| 78 |
+
13 | layers.1.leaky | LeakyReLU | 0
|
| 79 |
+
14 | layers.2 | ResidualBlock | 20.7 K
|
| 80 |
+
15 | layers.2.layers | ModuleList | 20.7 K
|
| 81 |
+
16 | layers.2.layers.0 | Sequential | 20.7 K
|
| 82 |
+
17 | layers.2.layers.0.0 | CNNBlock | 2.1 K
|
| 83 |
+
18 | layers.2.layers.0.0.conv | Conv2d | 2.0 K
|
| 84 |
+
19 | layers.2.layers.0.0.bn | BatchNorm2d | 64
|
| 85 |
+
20 | layers.2.layers.0.0.leaky | LeakyReLU | 0
|
| 86 |
+
21 | layers.2.layers.0.1 | CNNBlock | 18.6 K
|
| 87 |
+
22 | layers.2.layers.0.1.conv | Conv2d | 18.4 K
|
| 88 |
+
23 | layers.2.layers.0.1.bn | BatchNorm2d | 128
|
| 89 |
+
24 | layers.2.layers.0.1.leaky | LeakyReLU | 0
|
| 90 |
+
25 | layers.3 | CNNBlock | 74.0 K
|
| 91 |
+
26 | layers.3.conv | Conv2d | 73.7 K
|
| 92 |
+
27 | layers.3.bn | BatchNorm2d | 256
|
| 93 |
+
28 | layers.3.leaky | LeakyReLU | 0
|
| 94 |
+
29 | layers.4 | ResidualBlock | 164 K
|
| 95 |
+
30 | layers.4.layers | ModuleList | 164 K
|
| 96 |
+
31 | layers.4.layers.0 | Sequential | 82.3 K
|
| 97 |
+
32 | layers.4.layers.0.0 | CNNBlock | 8.3 K
|
| 98 |
+
33 | layers.4.layers.0.0.conv | Conv2d | 8.2 K
|
| 99 |
+
34 | layers.4.layers.0.0.bn | BatchNorm2d | 128
|
| 100 |
+
35 | layers.4.layers.0.0.leaky | LeakyReLU | 0
|
| 101 |
+
36 | layers.4.layers.0.1 | CNNBlock | 74.0 K
|
| 102 |
+
37 | layers.4.layers.0.1.conv | Conv2d | 73.7 K
|
| 103 |
+
38 | layers.4.layers.0.1.bn | BatchNorm2d | 256
|
| 104 |
+
39 | layers.4.layers.0.1.leaky | LeakyReLU | 0
|
| 105 |
+
40 | layers.4.layers.1 | Sequential | 82.3 K
|
| 106 |
+
41 | layers.4.layers.1.0 | CNNBlock | 8.3 K
|
| 107 |
+
42 | layers.4.layers.1.0.conv | Conv2d | 8.2 K
|
| 108 |
+
43 | layers.4.layers.1.0.bn | BatchNorm2d | 128
|
| 109 |
+
44 | layers.4.layers.1.0.leaky | LeakyReLU | 0
|
| 110 |
+
45 | layers.4.layers.1.1 | CNNBlock | 74.0 K
|
| 111 |
+
46 | layers.4.layers.1.1.conv | Conv2d | 73.7 K
|
| 112 |
+
47 | layers.4.layers.1.1.bn | BatchNorm2d | 256
|
| 113 |
+
48 | layers.4.layers.1.1.leaky | LeakyReLU | 0
|
| 114 |
+
49 | layers.5 | CNNBlock | 295 K
|
| 115 |
+
50 | layers.5.conv | Conv2d | 294 K
|
| 116 |
+
51 | layers.5.bn | BatchNorm2d | 512
|
| 117 |
+
52 | layers.5.leaky | LeakyReLU | 0
|
| 118 |
+
53 | layers.6 | ResidualBlock | 2.6 M
|
| 119 |
+
54 | layers.6.layers | ModuleList | 2.6 M
|
| 120 |
+
55 | layers.6.layers.0 | Sequential | 328 K
|
| 121 |
+
56 | layers.6.layers.0.0 | CNNBlock | 33.0 K
|
| 122 |
+
57 | layers.6.layers.0.0.conv | Conv2d | 32.8 K
|
| 123 |
+
58 | layers.6.layers.0.0.bn | BatchNorm2d | 256
|
| 124 |
+
59 | layers.6.layers.0.0.leaky | LeakyReLU | 0
|
| 125 |
+
60 | layers.6.layers.0.1 | CNNBlock | 295 K
|
| 126 |
+
61 | layers.6.layers.0.1.conv | Conv2d | 294 K
|
| 127 |
+
62 | layers.6.layers.0.1.bn | BatchNorm2d | 512
|
| 128 |
+
63 | layers.6.layers.0.1.leaky | LeakyReLU | 0
|
| 129 |
+
64 | layers.6.layers.1 | Sequential | 328 K
|
| 130 |
+
65 | layers.6.layers.1.0 | CNNBlock | 33.0 K
|
| 131 |
+
66 | layers.6.layers.1.0.conv | Conv2d | 32.8 K
|
| 132 |
+
67 | layers.6.layers.1.0.bn | BatchNorm2d | 256
|
| 133 |
+
68 | layers.6.layers.1.0.leaky | LeakyReLU | 0
|
| 134 |
+
69 | layers.6.layers.1.1 | CNNBlock | 295 K
|
| 135 |
+
70 | layers.6.layers.1.1.conv | Conv2d | 294 K
|
| 136 |
+
71 | layers.6.layers.1.1.bn | BatchNorm2d | 512
|
| 137 |
+
72 | layers.6.layers.1.1.leaky | LeakyReLU | 0
|
| 138 |
+
73 | layers.6.layers.2 | Sequential | 328 K
|
| 139 |
+
74 | layers.6.layers.2.0 | CNNBlock | 33.0 K
|
| 140 |
+
75 | layers.6.layers.2.0.conv | Conv2d | 32.8 K
|
| 141 |
+
76 | layers.6.layers.2.0.bn | BatchNorm2d | 256
|
| 142 |
+
77 | layers.6.layers.2.0.leaky | LeakyReLU | 0
|
| 143 |
+
78 | layers.6.layers.2.1 | CNNBlock | 295 K
|
| 144 |
+
79 | layers.6.layers.2.1.conv | Conv2d | 294 K
|
| 145 |
+
80 | layers.6.layers.2.1.bn | BatchNorm2d | 512
|
| 146 |
+
81 | layers.6.layers.2.1.leaky | LeakyReLU | 0
|
| 147 |
+
82 | layers.6.layers.3 | Sequential | 328 K
|
| 148 |
+
83 | layers.6.layers.3.0 | CNNBlock | 33.0 K
|
| 149 |
+
84 | layers.6.layers.3.0.conv | Conv2d | 32.8 K
|
| 150 |
+
85 | layers.6.layers.3.0.bn | BatchNorm2d | 256
|
| 151 |
+
86 | layers.6.layers.3.0.leaky | LeakyReLU | 0
|
| 152 |
+
87 | layers.6.layers.3.1 | CNNBlock | 295 K
|
| 153 |
+
88 | layers.6.layers.3.1.conv | Conv2d | 294 K
|
| 154 |
+
89 | layers.6.layers.3.1.bn | BatchNorm2d | 512
|
| 155 |
+
90 | layers.6.layers.3.1.leaky | LeakyReLU | 0
|
| 156 |
+
91 | layers.6.layers.4 | Sequential | 328 K
|
| 157 |
+
92 | layers.6.layers.4.0 | CNNBlock | 33.0 K
|
| 158 |
+
93 | layers.6.layers.4.0.conv | Conv2d | 32.8 K
|
| 159 |
+
94 | layers.6.layers.4.0.bn | BatchNorm2d | 256
|
| 160 |
+
95 | layers.6.layers.4.0.leaky | LeakyReLU | 0
|
| 161 |
+
96 | layers.6.layers.4.1 | CNNBlock | 295 K
|
| 162 |
+
97 | layers.6.layers.4.1.conv | Conv2d | 294 K
|
| 163 |
+
98 | layers.6.layers.4.1.bn | BatchNorm2d | 512
|
| 164 |
+
99 | layers.6.layers.4.1.leaky | LeakyReLU | 0
|
| 165 |
+
100 | layers.6.layers.5 | Sequential | 328 K
|
| 166 |
+
101 | layers.6.layers.5.0 | CNNBlock | 33.0 K
|
| 167 |
+
102 | layers.6.layers.5.0.conv | Conv2d | 32.8 K
|
| 168 |
+
103 | layers.6.layers.5.0.bn | BatchNorm2d | 256
|
| 169 |
+
104 | layers.6.layers.5.0.leaky | LeakyReLU | 0
|
| 170 |
+
105 | layers.6.layers.5.1 | CNNBlock | 295 K
|
| 171 |
+
106 | layers.6.layers.5.1.conv | Conv2d | 294 K
|
| 172 |
+
107 | layers.6.layers.5.1.bn | BatchNorm2d | 512
|
| 173 |
+
108 | layers.6.layers.5.1.leaky | LeakyReLU | 0
|
| 174 |
+
109 | layers.6.layers.6 | Sequential | 328 K
|
| 175 |
+
110 | layers.6.layers.6.0 | CNNBlock | 33.0 K
|
| 176 |
+
111 | layers.6.layers.6.0.conv | Conv2d | 32.8 K
|
| 177 |
+
112 | layers.6.layers.6.0.bn | BatchNorm2d | 256
|
| 178 |
+
113 | layers.6.layers.6.0.leaky | LeakyReLU | 0
|
| 179 |
+
114 | layers.6.layers.6.1 | CNNBlock | 295 K
|
| 180 |
+
115 | layers.6.layers.6.1.conv | Conv2d | 294 K
|
| 181 |
+
116 | layers.6.layers.6.1.bn | BatchNorm2d | 512
|
| 182 |
+
117 | layers.6.layers.6.1.leaky | LeakyReLU | 0
|
| 183 |
+
118 | layers.6.layers.7 | Sequential | 328 K
|
| 184 |
+
119 | layers.6.layers.7.0 | CNNBlock | 33.0 K
|
| 185 |
+
120 | layers.6.layers.7.0.conv | Conv2d | 32.8 K
|
| 186 |
+
121 | layers.6.layers.7.0.bn | BatchNorm2d | 256
|
| 187 |
+
122 | layers.6.layers.7.0.leaky | LeakyReLU | 0
|
| 188 |
+
123 | layers.6.layers.7.1 | CNNBlock | 295 K
|
| 189 |
+
124 | layers.6.layers.7.1.conv | Conv2d | 294 K
|
| 190 |
+
125 | layers.6.layers.7.1.bn | BatchNorm2d | 512
|
| 191 |
+
126 | layers.6.layers.7.1.leaky | LeakyReLU | 0
|
| 192 |
+
127 | layers.7 | CNNBlock | 1.2 M
|
| 193 |
+
128 | layers.7.conv | Conv2d | 1.2 M
|
| 194 |
+
129 | layers.7.bn | BatchNorm2d | 1.0 K
|
| 195 |
+
130 | layers.7.leaky | LeakyReLU | 0
|
| 196 |
+
131 | layers.8 | ResidualBlock | 10.5 M
|
| 197 |
+
132 | layers.8.layers | ModuleList | 10.5 M
|
| 198 |
+
133 | layers.8.layers.0 | Sequential | 1.3 M
|
| 199 |
+
134 | layers.8.layers.0.0 | CNNBlock | 131 K
|
| 200 |
+
135 | layers.8.layers.0.0.conv | Conv2d | 131 K
|
| 201 |
+
136 | layers.8.layers.0.0.bn | BatchNorm2d | 512
|
| 202 |
+
137 | layers.8.layers.0.0.leaky | LeakyReLU | 0
|
| 203 |
+
138 | layers.8.layers.0.1 | CNNBlock | 1.2 M
|
| 204 |
+
139 | layers.8.layers.0.1.conv | Conv2d | 1.2 M
|
| 205 |
+
140 | layers.8.layers.0.1.bn | BatchNorm2d | 1.0 K
|
| 206 |
+
141 | layers.8.layers.0.1.leaky | LeakyReLU | 0
|
| 207 |
+
142 | layers.8.layers.1 | Sequential | 1.3 M
|
| 208 |
+
143 | layers.8.layers.1.0 | CNNBlock | 131 K
|
| 209 |
+
144 | layers.8.layers.1.0.conv | Conv2d | 131 K
|
| 210 |
+
145 | layers.8.layers.1.0.bn | BatchNorm2d | 512
|
| 211 |
+
146 | layers.8.layers.1.0.leaky | LeakyReLU | 0
|
| 212 |
+
147 | layers.8.layers.1.1 | CNNBlock | 1.2 M
|
| 213 |
+
148 | layers.8.layers.1.1.conv | Conv2d | 1.2 M
|
| 214 |
+
149 | layers.8.layers.1.1.bn | BatchNorm2d | 1.0 K
|
| 215 |
+
150 | layers.8.layers.1.1.leaky | LeakyReLU | 0
|
| 216 |
+
151 | layers.8.layers.2 | Sequential | 1.3 M
|
| 217 |
+
152 | layers.8.layers.2.0 | CNNBlock | 131 K
|
| 218 |
+
153 | layers.8.layers.2.0.conv | Conv2d | 131 K
|
| 219 |
+
154 | layers.8.layers.2.0.bn | BatchNorm2d | 512
|
| 220 |
+
155 | layers.8.layers.2.0.leaky | LeakyReLU | 0
|
| 221 |
+
156 | layers.8.layers.2.1 | CNNBlock | 1.2 M
|
| 222 |
+
157 | layers.8.layers.2.1.conv | Conv2d | 1.2 M
|
| 223 |
+
158 | layers.8.layers.2.1.bn | BatchNorm2d | 1.0 K
|
| 224 |
+
159 | layers.8.layers.2.1.leaky | LeakyReLU | 0
|
| 225 |
+
160 | layers.8.layers.3 | Sequential | 1.3 M
|
| 226 |
+
161 | layers.8.layers.3.0 | CNNBlock | 131 K
|
| 227 |
+
162 | layers.8.layers.3.0.conv | Conv2d | 131 K
|
| 228 |
+
163 | layers.8.layers.3.0.bn | BatchNorm2d | 512
|
| 229 |
+
164 | layers.8.layers.3.0.leaky | LeakyReLU | 0
|
| 230 |
+
165 | layers.8.layers.3.1 | CNNBlock | 1.2 M
|
| 231 |
+
166 | layers.8.layers.3.1.conv | Conv2d | 1.2 M
|
| 232 |
+
167 | layers.8.layers.3.1.bn | BatchNorm2d | 1.0 K
|
| 233 |
+
168 | layers.8.layers.3.1.leaky | LeakyReLU | 0
|
| 234 |
+
169 | layers.8.layers.4 | Sequential | 1.3 M
|
| 235 |
+
170 | layers.8.layers.4.0 | CNNBlock | 131 K
|
| 236 |
+
171 | layers.8.layers.4.0.conv | Conv2d | 131 K
|
| 237 |
+
172 | layers.8.layers.4.0.bn | BatchNorm2d | 512
|
| 238 |
+
173 | layers.8.layers.4.0.leaky | LeakyReLU | 0
|
| 239 |
+
174 | layers.8.layers.4.1 | CNNBlock | 1.2 M
|
| 240 |
+
175 | layers.8.layers.4.1.conv | Conv2d | 1.2 M
|
| 241 |
+
176 | layers.8.layers.4.1.bn | BatchNorm2d | 1.0 K
|
| 242 |
+
177 | layers.8.layers.4.1.leaky | LeakyReLU | 0
|
| 243 |
+
178 | layers.8.layers.5 | Sequential | 1.3 M
|
| 244 |
+
179 | layers.8.layers.5.0 | CNNBlock | 131 K
|
| 245 |
+
180 | layers.8.layers.5.0.conv | Conv2d | 131 K
|
| 246 |
+
181 | layers.8.layers.5.0.bn | BatchNorm2d | 512
|
| 247 |
+
182 | layers.8.layers.5.0.leaky | LeakyReLU | 0
|
| 248 |
+
183 | layers.8.layers.5.1 | CNNBlock | 1.2 M
|
| 249 |
+
184 | layers.8.layers.5.1.conv | Conv2d | 1.2 M
|
| 250 |
+
185 | layers.8.layers.5.1.bn | BatchNorm2d | 1.0 K
|
| 251 |
+
186 | layers.8.layers.5.1.leaky | LeakyReLU | 0
|
| 252 |
+
187 | layers.8.layers.6 | Sequential | 1.3 M
|
| 253 |
+
188 | layers.8.layers.6.0 | CNNBlock | 131 K
|
| 254 |
+
189 | layers.8.layers.6.0.conv | Conv2d | 131 K
|
| 255 |
+
190 | layers.8.layers.6.0.bn | BatchNorm2d | 512
|
| 256 |
+
191 | layers.8.layers.6.0.leaky | LeakyReLU | 0
|
| 257 |
+
192 | layers.8.layers.6.1 | CNNBlock | 1.2 M
|
| 258 |
+
193 | layers.8.layers.6.1.conv | Conv2d | 1.2 M
|
| 259 |
+
194 | layers.8.layers.6.1.bn | BatchNorm2d | 1.0 K
|
| 260 |
+
195 | layers.8.layers.6.1.leaky | LeakyReLU | 0
|
| 261 |
+
196 | layers.8.layers.7 | Sequential | 1.3 M
|
| 262 |
+
197 | layers.8.layers.7.0 | CNNBlock | 131 K
|
| 263 |
+
198 | layers.8.layers.7.0.conv | Conv2d | 131 K
|
| 264 |
+
199 | layers.8.layers.7.0.bn | BatchNorm2d | 512
|
| 265 |
+
200 | layers.8.layers.7.0.leaky | LeakyReLU | 0
|
| 266 |
+
201 | layers.8.layers.7.1 | CNNBlock | 1.2 M
|
| 267 |
+
202 | layers.8.layers.7.1.conv | Conv2d | 1.2 M
|
| 268 |
+
203 | layers.8.layers.7.1.bn | BatchNorm2d | 1.0 K
|
| 269 |
+
204 | layers.8.layers.7.1.leaky | LeakyReLU | 0
|
| 270 |
+
205 | layers.9 | CNNBlock | 4.7 M
|
| 271 |
+
206 | layers.9.conv | Conv2d | 4.7 M
|
| 272 |
+
207 | layers.9.bn | BatchNorm2d | 2.0 K
|
| 273 |
+
208 | layers.9.leaky | LeakyReLU | 0
|
| 274 |
+
209 | layers.10 | ResidualBlock | 21.0 M
|
| 275 |
+
210 | layers.10.layers | ModuleList | 21.0 M
|
| 276 |
+
211 | layers.10.layers.0 | Sequential | 5.2 M
|
| 277 |
+
212 | layers.10.layers.0.0 | CNNBlock | 525 K
|
| 278 |
+
213 | layers.10.layers.0.0.conv | Conv2d | 524 K
|
| 279 |
+
214 | layers.10.layers.0.0.bn | BatchNorm2d | 1.0 K
|
| 280 |
+
215 | layers.10.layers.0.0.leaky | LeakyReLU | 0
|
| 281 |
+
216 | layers.10.layers.0.1 | CNNBlock | 4.7 M
|
| 282 |
+
217 | layers.10.layers.0.1.conv | Conv2d | 4.7 M
|
| 283 |
+
218 | layers.10.layers.0.1.bn | BatchNorm2d | 2.0 K
|
| 284 |
+
219 | layers.10.layers.0.1.leaky | LeakyReLU | 0
|
| 285 |
+
220 | layers.10.layers.1 | Sequential | 5.2 M
|
| 286 |
+
221 | layers.10.layers.1.0 | CNNBlock | 525 K
|
| 287 |
+
222 | layers.10.layers.1.0.conv | Conv2d | 524 K
|
| 288 |
+
223 | layers.10.layers.1.0.bn | BatchNorm2d | 1.0 K
|
| 289 |
+
224 | layers.10.layers.1.0.leaky | LeakyReLU | 0
|
| 290 |
+
225 | layers.10.layers.1.1 | CNNBlock | 4.7 M
|
| 291 |
+
226 | layers.10.layers.1.1.conv | Conv2d | 4.7 M
|
| 292 |
+
227 | layers.10.layers.1.1.bn | BatchNorm2d | 2.0 K
|
| 293 |
+
228 | layers.10.layers.1.1.leaky | LeakyReLU | 0
|
| 294 |
+
229 | layers.10.layers.2 | Sequential | 5.2 M
|
| 295 |
+
230 | layers.10.layers.2.0 | CNNBlock | 525 K
|
| 296 |
+
231 | layers.10.layers.2.0.conv | Conv2d | 524 K
|
| 297 |
+
232 | layers.10.layers.2.0.bn | BatchNorm2d | 1.0 K
|
| 298 |
+
233 | layers.10.layers.2.0.leaky | LeakyReLU | 0
|
| 299 |
+
234 | layers.10.layers.2.1 | CNNBlock | 4.7 M
|
| 300 |
+
235 | layers.10.layers.2.1.conv | Conv2d | 4.7 M
|
| 301 |
+
236 | layers.10.layers.2.1.bn | BatchNorm2d | 2.0 K
|
| 302 |
+
237 | layers.10.layers.2.1.leaky | LeakyReLU | 0
|
| 303 |
+
238 | layers.10.layers.3 | Sequential | 5.2 M
|
| 304 |
+
239 | layers.10.layers.3.0 | CNNBlock | 525 K
|
| 305 |
+
240 | layers.10.layers.3.0.conv | Conv2d | 524 K
|
| 306 |
+
241 | layers.10.layers.3.0.bn | BatchNorm2d | 1.0 K
|
| 307 |
+
242 | layers.10.layers.3.0.leaky | LeakyReLU | 0
|
| 308 |
+
243 | layers.10.layers.3.1 | CNNBlock | 4.7 M
|
| 309 |
+
244 | layers.10.layers.3.1.conv | Conv2d | 4.7 M
|
| 310 |
+
245 | layers.10.layers.3.1.bn | BatchNorm2d | 2.0 K
|
| 311 |
+
246 | layers.10.layers.3.1.leaky | LeakyReLU | 0
|
| 312 |
+
247 | layers.11 | CNNBlock | 525 K
|
| 313 |
+
248 | layers.11.conv | Conv2d | 524 K
|
| 314 |
+
249 | layers.11.bn | BatchNorm2d | 1.0 K
|
| 315 |
+
250 | layers.11.leaky | LeakyReLU | 0
|
| 316 |
+
251 | layers.12 | CNNBlock | 4.7 M
|
| 317 |
+
252 | layers.12.conv | Conv2d | 4.7 M
|
| 318 |
+
253 | layers.12.bn | BatchNorm2d | 2.0 K
|
| 319 |
+
254 | layers.12.leaky | LeakyReLU | 0
|
| 320 |
+
255 | layers.13 | ResidualBlock | 5.2 M
|
| 321 |
+
256 | layers.13.layers | ModuleList | 5.2 M
|
| 322 |
+
257 | layers.13.layers.0 | Sequential | 5.2 M
|
| 323 |
+
258 | layers.13.layers.0.0 | CNNBlock | 525 K
|
| 324 |
+
259 | layers.13.layers.0.0.conv | Conv2d | 524 K
|
| 325 |
+
260 | layers.13.layers.0.0.bn | BatchNorm2d | 1.0 K
|
| 326 |
+
261 | layers.13.layers.0.0.leaky | LeakyReLU | 0
|
| 327 |
+
262 | layers.13.layers.0.1 | CNNBlock | 4.7 M
|
| 328 |
+
263 | layers.13.layers.0.1.conv | Conv2d | 4.7 M
|
| 329 |
+
264 | layers.13.layers.0.1.bn | BatchNorm2d | 2.0 K
|
| 330 |
+
265 | layers.13.layers.0.1.leaky | LeakyReLU | 0
|
| 331 |
+
266 | layers.14 | CNNBlock | 525 K
|
| 332 |
+
267 | layers.14.conv | Conv2d | 524 K
|
| 333 |
+
268 | layers.14.bn | BatchNorm2d | 1.0 K
|
| 334 |
+
269 | layers.14.leaky | LeakyReLU | 0
|
| 335 |
+
270 | layers.15 | ScalePrediction | 4.8 M
|
| 336 |
+
271 | layers.15.pred | Sequential | 4.8 M
|
| 337 |
+
272 | layers.15.pred.0 | CNNBlock | 4.7 M
|
| 338 |
+
273 | layers.15.pred.0.conv | Conv2d | 4.7 M
|
| 339 |
+
274 | layers.15.pred.0.bn | BatchNorm2d | 2.0 K
|
| 340 |
+
275 | layers.15.pred.0.leaky | LeakyReLU | 0
|
| 341 |
+
276 | layers.15.pred.1 | CNNBlock | 77.0 K
|
| 342 |
+
277 | layers.15.pred.1.conv | Conv2d | 76.9 K
|
| 343 |
+
278 | layers.15.pred.1.bn | BatchNorm2d | 150
|
| 344 |
+
279 | layers.15.pred.1.leaky | LeakyReLU | 0
|
| 345 |
+
280 | layers.16 | CNNBlock | 131 K
|
| 346 |
+
281 | layers.16.conv | Conv2d | 131 K
|
| 347 |
+
282 | layers.16.bn | BatchNorm2d | 512
|
| 348 |
+
283 | layers.16.leaky | LeakyReLU | 0
|
| 349 |
+
284 | layers.17 | Upsample | 0
|
| 350 |
+
285 | layers.18 | CNNBlock | 197 K
|
| 351 |
+
286 | layers.18.conv | Conv2d | 196 K
|
| 352 |
+
287 | layers.18.bn | BatchNorm2d | 512
|
| 353 |
+
288 | layers.18.leaky | LeakyReLU | 0
|
| 354 |
+
289 | layers.19 | CNNBlock | 1.2 M
|
| 355 |
+
290 | layers.19.conv | Conv2d | 1.2 M
|
| 356 |
+
291 | layers.19.bn | BatchNorm2d | 1.0 K
|
| 357 |
+
292 | layers.19.leaky | LeakyReLU | 0
|
| 358 |
+
293 | layers.20 | ResidualBlock | 1.3 M
|
| 359 |
+
294 | layers.20.layers | ModuleList | 1.3 M
|
| 360 |
+
295 | layers.20.layers.0 | Sequential | 1.3 M
|
| 361 |
+
296 | layers.20.layers.0.0 | CNNBlock | 131 K
|
| 362 |
+
297 | layers.20.layers.0.0.conv | Conv2d | 131 K
|
| 363 |
+
298 | layers.20.layers.0.0.bn | BatchNorm2d | 512
|
| 364 |
+
299 | layers.20.layers.0.0.leaky | LeakyReLU | 0
|
| 365 |
+
300 | layers.20.layers.0.1 | CNNBlock | 1.2 M
|
| 366 |
+
301 | layers.20.layers.0.1.conv | Conv2d | 1.2 M
|
| 367 |
+
302 | layers.20.layers.0.1.bn | BatchNorm2d | 1.0 K
|
| 368 |
+
303 | layers.20.layers.0.1.leaky | LeakyReLU | 0
|
| 369 |
+
304 | layers.21 | CNNBlock | 131 K
|
| 370 |
+
305 | layers.21.conv | Conv2d | 131 K
|
| 371 |
+
306 | layers.21.bn | BatchNorm2d | 512
|
| 372 |
+
307 | layers.21.leaky | LeakyReLU | 0
|
| 373 |
+
308 | layers.22 | ScalePrediction | 1.2 M
|
| 374 |
+
309 | layers.22.pred | Sequential | 1.2 M
|
| 375 |
+
310 | layers.22.pred.0 | CNNBlock | 1.2 M
|
| 376 |
+
311 | layers.22.pred.0.conv | Conv2d | 1.2 M
|
| 377 |
+
312 | layers.22.pred.0.bn | BatchNorm2d | 1.0 K
|
| 378 |
+
313 | layers.22.pred.0.leaky | LeakyReLU | 0
|
| 379 |
+
314 | layers.22.pred.1 | CNNBlock | 38.6 K
|
| 380 |
+
315 | layers.22.pred.1.conv | Conv2d | 38.5 K
|
| 381 |
+
316 | layers.22.pred.1.bn | BatchNorm2d | 150
|
| 382 |
+
317 | layers.22.pred.1.leaky | LeakyReLU | 0
|
| 383 |
+
318 | layers.23 | CNNBlock | 33.0 K
|
| 384 |
+
319 | layers.23.conv | Conv2d | 32.8 K
|
| 385 |
+
320 | layers.23.bn | BatchNorm2d | 256
|
| 386 |
+
321 | layers.23.leaky | LeakyReLU | 0
|
| 387 |
+
322 | layers.24 | Upsample | 0
|
| 388 |
+
323 | layers.25 | CNNBlock | 49.4 K
|
| 389 |
+
324 | layers.25.conv | Conv2d | 49.2 K
|
| 390 |
+
325 | layers.25.bn | BatchNorm2d | 256
|
| 391 |
+
326 | layers.25.leaky | LeakyReLU | 0
|
| 392 |
+
327 | layers.26 | CNNBlock | 295 K
|
| 393 |
+
328 | layers.26.conv | Conv2d | 294 K
|
| 394 |
+
329 | layers.26.bn | BatchNorm2d | 512
|
| 395 |
+
330 | layers.26.leaky | LeakyReLU | 0
|
| 396 |
+
331 | layers.27 | ResidualBlock | 328 K
|
| 397 |
+
332 | layers.27.layers | ModuleList | 328 K
|
| 398 |
+
333 | layers.27.layers.0 | Sequential | 328 K
|
| 399 |
+
334 | layers.27.layers.0.0 | CNNBlock | 33.0 K
|
| 400 |
+
335 | layers.27.layers.0.0.conv | Conv2d | 32.8 K
|
| 401 |
+
336 | layers.27.layers.0.0.bn | BatchNorm2d | 256
|
| 402 |
+
337 | layers.27.layers.0.0.leaky | LeakyReLU | 0
|
| 403 |
+
338 | layers.27.layers.0.1 | CNNBlock | 295 K
|
| 404 |
+
339 | layers.27.layers.0.1.conv | Conv2d | 294 K
|
| 405 |
+
340 | layers.27.layers.0.1.bn | BatchNorm2d | 512
|
| 406 |
+
341 | layers.27.layers.0.1.leaky | LeakyReLU | 0
|
| 407 |
+
342 | layers.28 | CNNBlock | 33.0 K
|
| 408 |
+
343 | layers.28.conv | Conv2d | 32.8 K
|
| 409 |
+
344 | layers.28.bn | BatchNorm2d | 256
|
| 410 |
+
345 | layers.28.leaky | LeakyReLU | 0
|
| 411 |
+
346 | layers.29 | ScalePrediction | 314 K
|
| 412 |
+
347 | layers.29.pred | Sequential | 314 K
|
| 413 |
+
348 | layers.29.pred.0 | CNNBlock | 295 K
|
| 414 |
+
349 | layers.29.pred.0.conv | Conv2d | 294 K
|
| 415 |
+
350 | layers.29.pred.0.bn | BatchNorm2d | 512
|
| 416 |
+
351 | layers.29.pred.0.leaky | LeakyReLU | 0
|
| 417 |
+
352 | layers.29.pred.1 | CNNBlock | 19.4 K
|
| 418 |
+
353 | layers.29.pred.1.conv | Conv2d | 19.3 K
|
| 419 |
+
354 | layers.29.pred.1.bn | BatchNorm2d | 150
|
| 420 |
+
355 | layers.29.pred.1.leaky | LeakyReLU | 0
|
| 421 |
+
-------------------------------------------------------------------
|
| 422 |
+
61.6 M Trainable params
|
| 423 |
+
0 Non-trainable params
|
| 424 |
+
61.6 M Total params
|
| 425 |
+
246.506 Total estimated model params size (MB)
|
| 426 |
+
```
|
| 427 |
+
|
| 428 |
+
### LR Finder
|
| 429 |
+

|
| 430 |
+
|
| 431 |
+
### Loss & Accuracy
|
| 432 |
+
**Training & Validation Loss:**
|
| 433 |
+

|
| 434 |
+
|
| 435 |
+
**Testing Accuracy:**
|
| 436 |
+
```python
|
| 437 |
+
0%| | 0/39 [00:00<?, ?it/s]
|
| 438 |
+
3%|β | 1/39 [00:05<03:24, 5.37s/it]
|
| 439 |
+
5%|β | 2/39 [00:11<03:32, 5.75s/it]
|
| 440 |
+
8%|β | 3/39 [00:16<03:14, 5.41s/it]
|
| 441 |
+
10%|β | 4/39 [00:21<03:06, 5.33s/it]
|
| 442 |
+
13%|ββ | 5/39 [00:26<02:55, 5.17s/it]
|
| 443 |
+
15%|ββ | 6/39 [00:31<02:50, 5.16s/it]
|
| 444 |
+
18%|ββ | 7/39 [00:36<02:43, 5.11s/it]
|
| 445 |
+
21%|ββ | 8/39 [00:42<02:48, 5.43s/it]
|
| 446 |
+
23%|βββ | 9/39 [00:48<02:44, 5.47s/it]
|
| 447 |
+
26%|βββ | 10/39 [00:54<02:41, 5.58s/it]
|
| 448 |
+
28%|βββ | 11/39 [00:59<02:36, 5.59s/it]
|
| 449 |
+
31%|βββ | 12/39 [01:05<02:35, 5.77s/it]
|
| 450 |
+
33%|ββββ | 13/39 [01:11<02:28, 5.70s/it]
|
| 451 |
+
36%|ββββ | 14/39 [01:16<02:15, 5.42s/it]
|
| 452 |
+
38%|ββββ | 15/39 [01:21<02:07, 5.30s/it]
|
| 453 |
+
41%|ββββ | 16/39 [01:26<02:02, 5.34s/it]
|
| 454 |
+
44%|βββββ | 17/39 [01:31<01:54, 5.23s/it]
|
| 455 |
+
46%|βββββ | 18/39 [01:36<01:49, 5.22s/it]
|
| 456 |
+
49%|βββββ | 19/39 [01:42<01:43, 5.20s/it]
|
| 457 |
+
51%|ββββββ | 20/39 [01:46<01:33, 4.94s/it]
|
| 458 |
+
54%|ββββββ | 21/39 [01:50<01:23, 4.64s/it]
|
| 459 |
+
56%|ββββββ | 22/39 [01:54<01:14, 4.41s/it]
|
| 460 |
+
59%|ββββββ | 23/39 [01:57<01:03, 3.96s/it]
|
| 461 |
+
62%|βββββββ | 24/39 [02:00<00:54, 3.66s/it]
|
| 462 |
+
64%|βββββββ | 25/39 [02:04<00:55, 3.94s/it]
|
| 463 |
+
67%|βββββββ | 26/39 [02:10<00:56, 4.38s/it]
|
| 464 |
+
69%|βββββββ | 27/39 [02:14<00:53, 4.47s/it]
|
| 465 |
+
72%|ββββββββ | 28/39 [02:20<00:52, 4.77s/it]
|
| 466 |
+
74%|ββββββββ | 29/39 [02:25<00:50, 5.04s/it]
|
| 467 |
+
77%|ββββββββ | 30/39 [02:31<00:47, 5.25s/it]
|
| 468 |
+
79%|ββββββββ | 31/39 [02:37<00:42, 5.36s/it]
|
| 469 |
+
82%|βββββββββ | 32/39 [02:42<00:38, 5.43s/it]
|
| 470 |
+
85%|βββββββββ | 33/39 [02:47<00:31, 5.24s/it]
|
| 471 |
+
87%|βββββββββ | 34/39 [02:53<00:26, 5.29s/it]
|
| 472 |
+
90%|βββββββββ | 35/39 [02:58<00:21, 5.32s/it]
|
| 473 |
+
92%|ββββββββββ| 36/39 [03:03<00:15, 5.23s/it]
|
| 474 |
+
95%|ββββββββββ| 37/39 [03:08<00:10, 5.26s/it]
|
| 475 |
+
97%|ββββββββββ| 38/39 [03:14<00:05, 5.32s/it]
|
| 476 |
+
100%|ββββββββββ| 39/39 [03:17<00:00, 5.07s/it]
|
| 477 |
+
Class accuracy is: 81.601883%
|
| 478 |
+
No obj accuracy is: 97.991463%
|
| 479 |
+
Obj accuracy is: 75.976616%
|
| 480 |
+
```
|
| 481 |
+
### MAP Calculations
|
| 482 |
+
```python
|
| 483 |
+
0%| | 0/39 [00:00<?, ?it/s]
|
| 484 |
+
3%|β | 1/39 [00:40<25:35, 40.40s/it]
|
| 485 |
+
5%|β | 2/39 [01:24<26:05, 42.31s/it]
|
| 486 |
+
8%|β | 3/39 [02:01<24:02, 40.07s/it]
|
| 487 |
+
10%|β | 4/39 [02:40<23:04, 39.57s/it]
|
| 488 |
+
13%|ββ | 5/39 [03:36<25:45, 45.46s/it]
|
| 489 |
+
15%|ββ | 6/39 [04:20<24:45, 45.00s/it]
|
| 490 |
+
18%|ββ | 7/39 [05:03<23:37, 44.29s/it]
|
| 491 |
+
21%|ββ | 8/39 [05:47<22:55, 44.36s/it]
|
| 492 |
+
23%|βββ | 9/39 [06:33<22:25, 44.84s/it]
|
| 493 |
+
26%|βββ | 10/39 [07:06<19:54, 41.20s/it]
|
| 494 |
+
28%|βββ | 11/39 [07:58<20:45, 44.49s/it]
|
| 495 |
+
31%|βββ | 12/39 [08:36<19:10, 42.60s/it]
|
| 496 |
+
33%|ββββ | 13/39 [09:20<18:33, 42.81s/it]
|
| 497 |
+
36%|ββββ | 14/39 [10:01<17:43, 42.53s/it]
|
| 498 |
+
38%|ββββ | 15/39 [10:42<16:49, 42.04s/it]
|
| 499 |
+
41%|ββββ | 16/39 [11:25<16:10, 42.18s/it]
|
| 500 |
+
44%|βββββ | 17/39 [12:12<16:02, 43.73s/it]
|
| 501 |
+
46%|βββββ | 18/39 [12:56<15:20, 43.83s/it]
|
| 502 |
+
49%|βββββ | 19/39 [13:36<14:12, 42.64s/it]
|
| 503 |
+
51%|ββββββ | 20/39 [14:20<13:37, 43.04s/it]
|
| 504 |
+
54%|ββββββ | 21/39 [14:58<12:27, 41.54s/it]
|
| 505 |
+
56%|ββββββ | 22/39 [15:43<12:01, 42.45s/it]
|
| 506 |
+
59%|ββββββ | 23/39 [16:29<11:35, 43.49s/it]
|
| 507 |
+
62%|βββββββ | 24/39 [17:13<10:55, 43.69s/it]
|
| 508 |
+
64%|βββββββ | 25/39 [18:02<10:34, 45.29s/it]
|
| 509 |
+
67%|βββββββ | 26/39 [18:41<09:25, 43.53s/it]
|
| 510 |
+
69%|βββββββ | 27/39 [19:26<08:45, 43.77s/it]
|
| 511 |
+
72%|ββββββββ | 28/39 [20:04<07:44, 42.22s/it]
|
| 512 |
+
74%|ββββββββ | 29/39 [20:45<06:56, 41.65s/it]
|
| 513 |
+
77%|ββββββββ | 30/39 [21:32<06:30, 43.44s/it]
|
| 514 |
+
79%|ββββββββ | 31/39 [22:16<05:47, 43.46s/it]
|
| 515 |
+
82%|βββββββββ | 32/39 [22:52<04:49, 41.32s/it]
|
| 516 |
+
85%|βββββββββ | 33/39 [23:36<04:13, 42.19s/it]
|
| 517 |
+
87%|βββββββββ | 34/39 [24:18<03:29, 41.99s/it]
|
| 518 |
+
90%|βββββββββ | 35/39 [25:00<02:48, 42.17s/it]
|
| 519 |
+
92%|ββββββββββ| 36/39 [25:46<02:09, 43.24s/it]
|
| 520 |
+
95%|ββββββββββ| 37/39 [26:29<01:26, 43.24s/it]
|
| 521 |
+
97%|ββββββββββ| 38/39 [27:18<00:44, 44.74s/it]
|
| 522 |
+
100%|ββββββββββ| 39/39 [27:46<00:00, 42.74s/it]
|
| 523 |
+
MAP: 0.43667954206466675
|
| 524 |
+
```
|
| 525 |
+
### Tensorboard Plots
|
| 526 |
+
**Training Loss vs Steps:** 
|
| 527 |
+
|
| 528 |
+
**Validation Loss vs Steps:**
|
| 529 |
+
(Info: Validation loss calculated every 10 epochs to save time, thats why the straight line)
|
| 530 |
+

|
| 531 |
+
|
| 532 |
+
### GradCAM Representations
|
| 533 |
+
EigenCAM is used to generate CAM representation, since usal gradient based method wont work with detection models like Yolo, FRCNN etc.
|
| 534 |
+

|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
|
markdown.py
CHANGED
|
@@ -11,7 +11,7 @@ Github Link: https://github.com/RaviNaik/ERA-SESSION13/tree/main
|
|
| 11 |
5. **Obj accuracy: 75.976616%**
|
| 12 |
6. **MAP: 0.4366795**
|
| 13 |
|
| 14 |
-
Model Link:
|
| 15 |
|
| 16 |
"""
|
| 17 |
|
|
|
|
| 11 |
5. **Obj accuracy: 75.976616%**
|
| 12 |
6. **MAP: 0.4366795**
|
| 13 |
|
| 14 |
+
Model Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13/blob/main/model.ckpt
|
| 15 |
|
| 16 |
"""
|
| 17 |
|