ImageEditPro / app.py
selfit-camera's picture
init
57ab548
raw
history blame
14.4 kB
import gradio as gr
import threading
import os
import shutil
import tempfile
import time
from util import process_image_edit, get_country_info_safe, get_location_info_safe, contains_chinese
from nfsw import NSFWDetector
# 配置参数
NSFW_TIME_WINDOW = 5 # 时间窗口:5分钟
NSFW_LIMIT = 6 # 限制次数:6次
IP_Dict = {}
NSFW_Dict = {} # 记录每个IP的NSFW违规次数
NSFW_Time_Dict = {} # 记录每个IP在特定时间窗口的NSFW检测次数,键格式: "ip_timestamp"
def get_current_time_window():
"""
获取当前的整点时间窗口
Returns:
tuple: (窗口开始时间戳, 窗口结束时间戳)
"""
current_time = time.time()
# 获取当前时间的分钟数
current_struct = time.localtime(current_time)
current_minute = current_struct.tm_min
# 计算当前5分钟时间窗口的开始分钟
window_start_minute = (current_minute // NSFW_TIME_WINDOW) * NSFW_TIME_WINDOW
# 构建窗口开始时间
window_start_struct = time.struct_time((
current_struct.tm_year, current_struct.tm_mon, current_struct.tm_mday,
current_struct.tm_hour, window_start_minute, 0,
current_struct.tm_wday, current_struct.tm_yday, current_struct.tm_isdst
))
window_start_time = time.mktime(window_start_struct)
window_end_time = window_start_time + (NSFW_TIME_WINDOW * 60)
return window_start_time, window_end_time
def check_nsfw_rate_limit(client_ip):
"""
检查IP的NSFW检测频率限制(基于整点时间窗口)
Args:
client_ip (str): 客户端IP地址
Returns:
tuple: (是否超过限制, 剩余等待时间)
"""
current_time = time.time()
window_start_time, window_end_time = get_current_time_window()
# 清理不在当前时间窗口的记录
current_window_key = f"{client_ip}_{int(window_start_time)}"
# 如果没有当前窗口的记录,创建新的
if current_window_key not in NSFW_Time_Dict:
NSFW_Time_Dict[current_window_key] = 0
# 清理旧的窗口记录(保持内存清洁)
keys_to_remove = []
for key in NSFW_Time_Dict:
if key.startswith(client_ip + "_"):
window_time = int(key.split("_")[1])
if window_time < window_start_time:
keys_to_remove.append(key)
for key in keys_to_remove:
del NSFW_Time_Dict[key]
# 检查当前窗口是否超过限制
if NSFW_Time_Dict[current_window_key] >= NSFW_LIMIT:
# 计算到下一个时间窗口的等待时间
wait_time = window_end_time - current_time
return True, max(0, wait_time)
return False, 0
def record_nsfw_detection(client_ip):
"""
记录IP的NSFW检测时间(基于整点时间窗口)
Args:
client_ip (str): 客户端IP地址
"""
window_start_time, _ = get_current_time_window()
current_window_key = f"{client_ip}_{int(window_start_time)}"
# 增加当前窗口的计数
if current_window_key not in NSFW_Time_Dict:
NSFW_Time_Dict[current_window_key] = 0
NSFW_Time_Dict[current_window_key] += 1
# 记录到NSFW_Dict中(兼容现有逻辑)
if client_ip not in NSFW_Dict:
NSFW_Dict[client_ip] = 0
NSFW_Dict[client_ip] += 1
def get_current_window_info(client_ip):
"""
获取当前窗口的统计信息(用于调试)
Args:
client_ip (str): 客户端IP地址
Returns:
dict: 当前窗口的统计信息
"""
window_start_time, window_end_time = get_current_time_window()
current_window_key = f"{client_ip}_{int(window_start_time)}"
current_count = NSFW_Time_Dict.get(current_window_key, 0)
# 格式化时间显示
start_time_str = time.strftime("%H:%M:%S", time.localtime(window_start_time))
end_time_str = time.strftime("%H:%M:%S", time.localtime(window_end_time))
return {
"window_start": start_time_str,
"window_end": end_time_str,
"current_count": current_count,
"limit": NSFW_LIMIT,
"window_key": current_window_key
}
# 初始化NSFW检测器(从Hugging Face下载)
try:
nsfw_detector = NSFWDetector() # 自动从Hugging Face下载falconsai_yolov9_nsfw_model_quantized.pt
print("✅ NSFW检测器初始化成功")
except Exception as e:
print(f"❌ NSFW检测器初始化失败: {e}")
nsfw_detector = None
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
"""
Interface function for processing image editing
"""
# 提取用户IP
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
if client_ip not in IP_Dict:
IP_Dict[client_ip] = 0
IP_Dict[client_ip] += 1
# 获取IP属地信息
country_info = get_country_info_safe(client_ip)
location_info = get_location_info_safe(client_ip)
# # 检查IP是否因NSFW违规过多而被屏蔽 3
# if client_ip in NSFW_Dict and NSFW_Dict[client_ip] >= 5:
# print(f"❌ IP blocked due to excessive NSFW violations - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
# # 检查是否需要特殊处理(中文prompt或中国IP)
# has_chinese = contains_chinese(prompt.strip()) if prompt else False
# is_china_ip = location_info.get("country", "").lower() == "中国"
# if has_chinese or is_china_ip:
# # 构建特殊警告信息
# prov = location_info.get("prov", "未知省份")
# city = location_info.get("city", "未知城市")
# isp = location_info.get("isp", "Unknown")
# # 处理城市名称
# city_name = city.replace("市", "") if city != "未知城市" else "当地"
# # 处理ISP名称,去掉"中国"前缀
# isp_name = isp.replace("中国", "") if isp != "Unknown" else "未知"
# warning_msg = f"您的ip地址为{client_ip},地点为{prov}-{city},您的网络服务商为{isp_name},检测到您目前正在浏览,制作淫秽内容,已经上报给 {city_name}市公安局,已加急处理,请耐心等待警察上门调查"
# return None, f"❌ {warning_msg}"
# else:
# return None, f"❌ Your ip {client_ip}, your region has been blocked for too much nsfw content"
if input_image is None:
return None, "Please upload an image first"
if not prompt or prompt.strip() == "":
return None, "Please enter editing prompt"
# 检查prompt长度是否大于3个字符
if len(prompt.strip()) <= 3:
return None, "❌ Editing prompt must be more than 3 characters"
# 检查图片是否包含NSFW内容
nsfw_result = None
if nsfw_detector is not None and input_image is not None:
try:
# 直接使用PIL Image对象进行检测,避免文件路径问题
nsfw_result = nsfw_detector.predict_pil_label_only(input_image)
if nsfw_result.lower() == "nsfw":
print(f"🔍 NSFW检测结果: ❌❌❌ {nsfw_result} - IP: {client_ip}({country_info})")
# 检查NSFW频率限制
is_rate_limited, wait_time = check_nsfw_rate_limit(client_ip)
if is_rate_limited:
# 超过频率限制,显示等待提示并阻止继续
wait_minutes = int(wait_time / 60) + 1 # 向上取整到分钟
window_info = get_current_window_info(client_ip)
print(f"⚠️ NSFW频率限制 - IP: {client_ip}({country_info})")
print(f" 时间窗口: {window_info['window_start']} - {window_info['window_end']}")
print(f" 当前计数: {window_info['current_count']}/{NSFW_LIMIT}, 需要等待 {wait_minutes} 分钟")
return None, f"❌ Please wait {wait_minutes} minutes before generating again"
else:
# 未超过频率限制,记录此次检测但允许继续处理
record_nsfw_detection(client_ip)
window_info = get_current_window_info(client_ip)
# print(f"🔍 NSFW检测记录 - IP: {client_ip}({country_info})")
# print(f" 时间窗口: {window_info['window_start']} - {window_info['window_end']}")
# print(f" 当前计数: {window_info['current_count']}/{NSFW_LIMIT}, 允许继续处理")
# 不return,允许继续处理图片编辑
else:
print(f"🔍 NSFW检测结果: ✅✅✅ {nsfw_result} - IP: {client_ip}({country_info})")
except Exception as e:
print(f"⚠️ NSFW检测失败: {e}")
# 检测失败时允许继续处理
if IP_Dict[client_ip]>10 and country_info.lower() in ["印度", "巴基斯坦"]:
print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
return None, "❌ Content not allowed. Please modify your prompt"
# if IP_Dict[client_ip]>18 and country_info.lower() in ["中国"]:
# print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
# return None, "❌ Content not allowed. Please modify your prompt"
# if client_ip.lower() in ["221.194.171.230", "101.126.56.37", "101.126.56.44"]:
# print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
# return None, "❌ Content not allowed. Please modify your prompt"
result_url = None
status_message = ""
def progress_callback(message):
nonlocal status_message
status_message = message
progress(0.5, desc=message)
try:
# 打印成功访问的信息
print(f"✅ Processing started - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}", flush=True)
# Call image editing processing function
result_url, message = process_image_edit(input_image, prompt.strip(), progress_callback)
if result_url:
print(f"✅ Processing completed successfully - IP: {client_ip}({country_info}), result_url: {result_url}", flush=True)
progress(1.0, desc="Processing completed")
return result_url, "✅ " + message
else:
print(f"❌ Processing failed - IP: {client_ip}({country_info}), error: {message}", flush=True)
return None, "❌ " + message
except Exception as e:
return None, f"❌ Error occurred during processing: {str(e)}"
# Create Gradio interface
def create_app():
with gr.Blocks(
title="AI Image Editor",
theme=gr.themes.Soft(),
css="""
.main-container {
max-width: 1200px;
margin: 0 auto;
}
.upload-area {
border: 2px dashed #ccc;
border-radius: 10px;
padding: 20px;
text-align: center;
}
.result-area {
margin-top: 20px;
padding: 20px;
border-radius: 10px;
background-color: #f8f9fa;
}
"""
) as app:
gr.Markdown(
"""
# 🎨 AI Image Editor
""",
elem_classes=["main-container"]
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📸 Upload Image")
input_image = gr.Image(
label="Select image to edit",
type="pil",
height=400,
elem_classes=["upload-area"]
)
gr.Markdown("### ✍️ Editing Instructions")
prompt_input = gr.Textbox(
label="Enter editing prompt",
placeholder="For example: change background to beach, add rainbow, remove background, etc...",
lines=3,
max_lines=5
)
edit_button = gr.Button(
"🚀 Start Editing",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### 🎯 Editing Result")
output_image = gr.Image(
label="Edited image",
height=400,
elem_classes=["result-area"]
)
status_output = gr.Textbox(
label="Processing status",
lines=2,
max_lines=3,
interactive=False
)
# Example area
gr.Markdown("### 💡 Prompt Examples")
with gr.Row():
example_prompts = [
"Change the character's background to a sunny seaside with blue waves.",
"Change the character's background to New York at night with neon lights.",
"Change the character's background to a fairytale castle with bright colors.",
"Change background to forest",
"Change background to snow mountain"
]
for prompt in example_prompts:
gr.Button(
prompt,
size="sm"
).click(
lambda p=prompt: p,
outputs=prompt_input
)
# Bind button click event
edit_button.click(
fn=edit_image_interface,
inputs=[input_image, prompt_input],
outputs=[output_image, status_output],
show_progress=True
)
return app
if __name__ == "__main__":
app = create_app()
app.queue() # Enable queue to handle concurrent requests
app.launch()