Spaces:
Runtime error
Runtime error
Point prompt mode ready for review
Browse files- app.py +186 -68
- utils/draw.py +32 -0
- utils/efficient_sam.py +33 -0
app.py
CHANGED
|
@@ -7,7 +7,8 @@ import torch
|
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import SamModel, SamProcessor
|
| 9 |
|
| 10 |
-
from utils.efficient_sam import load, inference_with_box
|
|
|
|
| 11 |
|
| 12 |
MARKDOWN = """
|
| 13 |
# EfficientSAM sv. SAM
|
|
@@ -17,28 +18,74 @@ This is a demo for ⚔️ SAM Battlegrounds - a speed and accuracy comparison be
|
|
| 17 |
[SAM](https://arxiv.org/abs/2304.02643).
|
| 18 |
"""
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
|
| 22 |
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
| 23 |
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
| 24 |
MASK_ANNOTATOR = sv.MaskAnnotator(
|
| 25 |
-
color=
|
| 26 |
-
color_lookup=sv.ColorLookup.INDEX)
|
| 27 |
-
BOX_ANNOTATOR = sv.BoundingBoxAnnotator(
|
| 28 |
-
color=sv.Color.red(),
|
| 29 |
color_lookup=sv.ColorLookup.INDEX)
|
| 30 |
|
| 31 |
|
| 32 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
bgr_image = image[:, :, ::-1]
|
| 34 |
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
| 35 |
scene=bgr_image, detections=detections)
|
| 36 |
-
annotated_bgr_image =
|
| 37 |
-
scene=annotated_bgr_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
return annotated_bgr_image[:, :, ::-1]
|
| 39 |
|
| 40 |
|
| 41 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
image: np.ndarray,
|
| 43 |
x_min: int,
|
| 44 |
y_min: int,
|
|
@@ -49,10 +96,17 @@ def efficient_sam_inference(
|
|
| 49 |
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE)
|
| 50 |
mask = mask[np.newaxis, ...]
|
| 51 |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 52 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
-
def
|
| 56 |
image: np.ndarray,
|
| 57 |
x_min: int,
|
| 58 |
y_min: int,
|
|
@@ -76,10 +130,17 @@ def sam_inference(
|
|
| 76 |
)[0][0][0].numpy()
|
| 77 |
mask = mask[np.newaxis, ...]
|
| 78 |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 79 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
-
def
|
| 83 |
image: np.ndarray,
|
| 84 |
x_min: int,
|
| 85 |
y_min: int,
|
|
@@ -87,8 +148,46 @@ def inference(
|
|
| 87 |
y_max: int
|
| 88 |
) -> Tuple[np.ndarray, np.ndarray]:
|
| 89 |
return (
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
|
|
@@ -96,73 +195,92 @@ def clear(_: np.ndarray) -> Tuple[None, None]:
|
|
| 96 |
return None, None
|
| 97 |
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Blocks() as demo:
|
| 100 |
gr.Markdown(MARKDOWN)
|
| 101 |
with gr.Tab(label="Box prompt"):
|
| 102 |
with gr.Row():
|
| 103 |
with gr.Column():
|
| 104 |
-
|
| 105 |
with gr.Accordion(label="Box", open=False):
|
| 106 |
with gr.Row():
|
| 107 |
-
x_min_number
|
| 108 |
-
y_min_number
|
| 109 |
-
x_max_number
|
| 110 |
-
y_max_number
|
| 111 |
-
|
| 112 |
-
|
| 113 |
with gr.Row():
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
gr.Examples(
|
| 117 |
-
fn=
|
| 118 |
-
examples=
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
69,
|
| 122 |
-
26,
|
| 123 |
-
625,
|
| 124 |
-
704
|
| 125 |
-
],
|
| 126 |
-
[
|
| 127 |
-
'https://media.roboflow.com/efficient-sam/corgi.jpg',
|
| 128 |
-
801,
|
| 129 |
-
510,
|
| 130 |
-
1782,
|
| 131 |
-
993
|
| 132 |
-
],
|
| 133 |
-
[
|
| 134 |
-
'https://media.roboflow.com/efficient-sam/horses.jpg',
|
| 135 |
-
814,
|
| 136 |
-
696,
|
| 137 |
-
1523,
|
| 138 |
-
1183
|
| 139 |
-
],
|
| 140 |
-
[
|
| 141 |
-
'https://media.roboflow.com/efficient-sam/bears.jpg',
|
| 142 |
-
653,
|
| 143 |
-
874,
|
| 144 |
-
1173,
|
| 145 |
-
1229
|
| 146 |
-
]
|
| 147 |
-
],
|
| 148 |
-
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
| 149 |
-
outputs=[efficient_sam_output_image, sam_output_image],
|
| 150 |
)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
inputs=
|
| 155 |
-
outputs=
|
| 156 |
)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
inputs=
|
| 160 |
-
outputs=
|
| 161 |
)
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
clear,
|
| 164 |
-
inputs=
|
| 165 |
-
outputs=[
|
| 166 |
)
|
| 167 |
|
| 168 |
demo.launch(debug=False, show_error=True)
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import SamModel, SamProcessor
|
| 9 |
|
| 10 |
+
from utils.efficient_sam import load, inference_with_box, inference_with_point
|
| 11 |
+
from utils.draw import draw_circle, calculate_dynamic_circle_radius
|
| 12 |
|
| 13 |
MARKDOWN = """
|
| 14 |
# EfficientSAM sv. SAM
|
|
|
|
| 18 |
[SAM](https://arxiv.org/abs/2304.02643).
|
| 19 |
"""
|
| 20 |
|
| 21 |
+
BOX_EXAMPLES = [
|
| 22 |
+
['https://media.roboflow.com/efficient-sam/corgi.jpg', 801, 510, 1782, 993],
|
| 23 |
+
['https://media.roboflow.com/efficient-sam/horses.jpg', 814, 696, 1523, 1183],
|
| 24 |
+
['https://media.roboflow.com/efficient-sam/bears.jpg', 653, 874, 1173, 1229]
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
POINT_EXAMPLES = [
|
| 28 |
+
['https://media.roboflow.com/efficient-sam/corgi.jpg', 1291, 751],
|
| 29 |
+
['https://media.roboflow.com/efficient-sam/horses.jpg', 1168, 939],
|
| 30 |
+
['https://media.roboflow.com/efficient-sam/bears.jpg', 913, 1051]
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
PROMPT_COLOR = sv.Color.from_hex("#D3D3D3")
|
| 34 |
+
MASK_COLOR = sv.Color.from_hex("#FF0000")
|
| 35 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
|
| 37 |
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
| 38 |
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
| 39 |
MASK_ANNOTATOR = sv.MaskAnnotator(
|
| 40 |
+
color=MASK_COLOR,
|
|
|
|
|
|
|
|
|
|
| 41 |
color_lookup=sv.ColorLookup.INDEX)
|
| 42 |
|
| 43 |
|
| 44 |
+
def annotate_image_with_box_prompt_result(
|
| 45 |
+
image: np.ndarray,
|
| 46 |
+
detections: sv.Detections,
|
| 47 |
+
x_min: int,
|
| 48 |
+
y_min: int,
|
| 49 |
+
x_max: int,
|
| 50 |
+
y_max: int
|
| 51 |
+
) -> np.ndarray:
|
| 52 |
+
h, w, _ = image.shape
|
| 53 |
bgr_image = image[:, :, ::-1]
|
| 54 |
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
| 55 |
scene=bgr_image, detections=detections)
|
| 56 |
+
annotated_bgr_image = sv.draw_rectangle(
|
| 57 |
+
scene=annotated_bgr_image,
|
| 58 |
+
rect=sv.Rect(
|
| 59 |
+
x=x_min,
|
| 60 |
+
y=y_min,
|
| 61 |
+
width=int(x_max - x_min),
|
| 62 |
+
height=int(y_max - y_min),
|
| 63 |
+
),
|
| 64 |
+
color=PROMPT_COLOR,
|
| 65 |
+
thickness=sv.calculate_dynamic_line_thickness(resolution_wh=(w, h))
|
| 66 |
+
)
|
| 67 |
return annotated_bgr_image[:, :, ::-1]
|
| 68 |
|
| 69 |
|
| 70 |
+
def annotate_image_with_point_prompt_result(
|
| 71 |
+
image: np.ndarray,
|
| 72 |
+
detections: sv.Detections,
|
| 73 |
+
x: int,
|
| 74 |
+
y: int
|
| 75 |
+
) -> np.ndarray:
|
| 76 |
+
h, w, _ = image.shape
|
| 77 |
+
bgr_image = image[:, :, ::-1]
|
| 78 |
+
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
| 79 |
+
scene=bgr_image, detections=detections)
|
| 80 |
+
annotated_bgr_image = draw_circle(
|
| 81 |
+
scene=annotated_bgr_image,
|
| 82 |
+
center=sv.Point(x=x, y=y),
|
| 83 |
+
radius=calculate_dynamic_circle_radius(resolution_wh=(w, h)),
|
| 84 |
+
color=PROMPT_COLOR)
|
| 85 |
+
return annotated_bgr_image[:, :, ::-1]
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def efficient_sam_box_inference(
|
| 89 |
image: np.ndarray,
|
| 90 |
x_min: int,
|
| 91 |
y_min: int,
|
|
|
|
| 96 |
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE)
|
| 97 |
mask = mask[np.newaxis, ...]
|
| 98 |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 99 |
+
return annotate_image_with_box_prompt_result(
|
| 100 |
+
image=image,
|
| 101 |
+
detections=detections,
|
| 102 |
+
x_max=x_max,
|
| 103 |
+
x_min=x_min,
|
| 104 |
+
y_max=y_max,
|
| 105 |
+
y_min=y_min
|
| 106 |
+
)
|
| 107 |
|
| 108 |
|
| 109 |
+
def sam_box_inference(
|
| 110 |
image: np.ndarray,
|
| 111 |
x_min: int,
|
| 112 |
y_min: int,
|
|
|
|
| 130 |
)[0][0][0].numpy()
|
| 131 |
mask = mask[np.newaxis, ...]
|
| 132 |
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 133 |
+
return annotate_image_with_box_prompt_result(
|
| 134 |
+
image=image,
|
| 135 |
+
detections=detections,
|
| 136 |
+
x_max=x_max,
|
| 137 |
+
x_min=x_min,
|
| 138 |
+
y_max=y_max,
|
| 139 |
+
y_min=y_min
|
| 140 |
+
)
|
| 141 |
|
| 142 |
|
| 143 |
+
def box_inference(
|
| 144 |
image: np.ndarray,
|
| 145 |
x_min: int,
|
| 146 |
y_min: int,
|
|
|
|
| 148 |
y_max: int
|
| 149 |
) -> Tuple[np.ndarray, np.ndarray]:
|
| 150 |
return (
|
| 151 |
+
efficient_sam_box_inference(image, x_min, y_min, x_max, y_max),
|
| 152 |
+
sam_box_inference(image, x_min, y_min, x_max, y_max)
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def efficient_sam_point_inference(image: np.ndarray, x: int, y: int) -> np.ndarray:
|
| 157 |
+
point = np.array([[x, y]])
|
| 158 |
+
mask = inference_with_point(image, point, EFFICIENT_SAM_MODEL, DEVICE)
|
| 159 |
+
mask = mask[np.newaxis, ...]
|
| 160 |
+
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 161 |
+
return annotate_image_with_point_prompt_result(
|
| 162 |
+
image=image, detections=detections, x=x, y=y)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def sam_point_inference(image: np.ndarray, x: int, y: int) -> np.ndarray:
|
| 166 |
+
input_points = [[[x, y]]]
|
| 167 |
+
inputs = SAM_PROCESSOR(
|
| 168 |
+
Image.fromarray(image),
|
| 169 |
+
input_points=[input_points],
|
| 170 |
+
return_tensors="pt"
|
| 171 |
+
).to(DEVICE)
|
| 172 |
+
|
| 173 |
+
with torch.no_grad():
|
| 174 |
+
outputs = SAM_MODEL(**inputs)
|
| 175 |
+
|
| 176 |
+
mask = SAM_PROCESSOR.image_processor.post_process_masks(
|
| 177 |
+
outputs.pred_masks.cpu(),
|
| 178 |
+
inputs["original_sizes"].cpu(),
|
| 179 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 180 |
+
)[0][0][0].numpy()
|
| 181 |
+
mask = mask[np.newaxis, ...]
|
| 182 |
+
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 183 |
+
return annotate_image_with_point_prompt_result(
|
| 184 |
+
image=image, detections=detections, x=x, y=y)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def point_inference(image: np.ndarray, x: int, y: int) -> Tuple[np.ndarray, np.ndarray]:
|
| 188 |
+
return (
|
| 189 |
+
efficient_sam_point_inference(image, x, y),
|
| 190 |
+
sam_point_inference(image, x, y)
|
| 191 |
)
|
| 192 |
|
| 193 |
|
|
|
|
| 195 |
return None, None
|
| 196 |
|
| 197 |
|
| 198 |
+
box_input_image = gr.Image()
|
| 199 |
+
x_min_number = gr.Number(label="x_min")
|
| 200 |
+
y_min_number = gr.Number(label="y_min")
|
| 201 |
+
x_max_number = gr.Number(label="x_max")
|
| 202 |
+
y_max_number = gr.Number(label="y_max")
|
| 203 |
+
box_inputs = [box_input_image, x_min_number, y_min_number, x_max_number, y_max_number]
|
| 204 |
+
|
| 205 |
+
point_input_image = gr.Image()
|
| 206 |
+
x_number = gr.Number(label="x")
|
| 207 |
+
y_number = gr.Number(label="y")
|
| 208 |
+
point_inputs = [point_input_image, x_number, y_number]
|
| 209 |
+
|
| 210 |
+
|
| 211 |
with gr.Blocks() as demo:
|
| 212 |
gr.Markdown(MARKDOWN)
|
| 213 |
with gr.Tab(label="Box prompt"):
|
| 214 |
with gr.Row():
|
| 215 |
with gr.Column():
|
| 216 |
+
box_input_image.render()
|
| 217 |
with gr.Accordion(label="Box", open=False):
|
| 218 |
with gr.Row():
|
| 219 |
+
x_min_number.render()
|
| 220 |
+
y_min_number.render()
|
| 221 |
+
x_max_number.render()
|
| 222 |
+
y_max_number.render()
|
| 223 |
+
efficient_sam_box_output_image = gr.Image(label="EfficientSAM")
|
| 224 |
+
sam_box_output_image = gr.Image(label="SAM")
|
| 225 |
with gr.Row():
|
| 226 |
+
submit_box_inference_button = gr.Button("Submit")
|
| 227 |
+
gr.Examples(
|
| 228 |
+
fn=box_inference,
|
| 229 |
+
examples=BOX_EXAMPLES,
|
| 230 |
+
inputs=box_inputs,
|
| 231 |
+
outputs=[efficient_sam_box_output_image, sam_box_output_image],
|
| 232 |
+
)
|
| 233 |
+
with gr.Tab(label="Point prompt"):
|
| 234 |
+
with gr.Row():
|
| 235 |
+
with gr.Column():
|
| 236 |
+
point_input_image.render()
|
| 237 |
+
with gr.Accordion(label="Point", open=False):
|
| 238 |
+
with gr.Row():
|
| 239 |
+
x_number.render()
|
| 240 |
+
y_number.render()
|
| 241 |
+
efficient_sam_point_output_image = gr.Image(label="EfficientSAM")
|
| 242 |
+
sam_point_output_image = gr.Image(label="SAM")
|
| 243 |
+
with gr.Row():
|
| 244 |
+
submit_point_inference_button = gr.Button("Submit")
|
| 245 |
gr.Examples(
|
| 246 |
+
fn=point_inference,
|
| 247 |
+
examples=POINT_EXAMPLES,
|
| 248 |
+
inputs=point_inputs,
|
| 249 |
+
outputs=[efficient_sam_point_output_image, sam_point_output_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
)
|
| 251 |
|
| 252 |
+
submit_box_inference_button.click(
|
| 253 |
+
efficient_sam_box_inference,
|
| 254 |
+
inputs=box_inputs,
|
| 255 |
+
outputs=efficient_sam_box_output_image
|
| 256 |
)
|
| 257 |
+
submit_box_inference_button.click(
|
| 258 |
+
sam_box_inference,
|
| 259 |
+
inputs=box_inputs,
|
| 260 |
+
outputs=sam_box_output_image
|
| 261 |
)
|
| 262 |
+
|
| 263 |
+
submit_point_inference_button.click(
|
| 264 |
+
efficient_sam_point_inference,
|
| 265 |
+
inputs=point_inputs,
|
| 266 |
+
outputs=efficient_sam_point_output_image
|
| 267 |
+
)
|
| 268 |
+
submit_point_inference_button.click(
|
| 269 |
+
sam_point_inference,
|
| 270 |
+
inputs=point_inputs,
|
| 271 |
+
outputs=sam_point_output_image
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
box_input_image.change(
|
| 275 |
+
clear,
|
| 276 |
+
inputs=box_input_image,
|
| 277 |
+
outputs=[efficient_sam_box_output_image, sam_box_output_image]
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
point_input_image.change(
|
| 281 |
clear,
|
| 282 |
+
inputs=point_input_image,
|
| 283 |
+
outputs=[efficient_sam_point_output_image, sam_point_output_image]
|
| 284 |
)
|
| 285 |
|
| 286 |
demo.launch(debug=False, show_error=True)
|
utils/draw.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import supervision as sv
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def draw_circle(
|
| 9 |
+
scene: np.ndarray, center: sv.Point, color: sv.Color, radius: int = 2
|
| 10 |
+
) -> np.ndarray:
|
| 11 |
+
cv2.circle(
|
| 12 |
+
scene,
|
| 13 |
+
center=center.as_xy_int_tuple(),
|
| 14 |
+
radius=radius,
|
| 15 |
+
color=color.as_bgr(),
|
| 16 |
+
thickness=-1,
|
| 17 |
+
)
|
| 18 |
+
return scene
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def calculate_dynamic_circle_radius(resolution_wh: Tuple[int, int]) -> int:
|
| 22 |
+
min_dimension = min(resolution_wh)
|
| 23 |
+
if min_dimension < 480:
|
| 24 |
+
return 4
|
| 25 |
+
if min_dimension < 720:
|
| 26 |
+
return 8
|
| 27 |
+
if min_dimension < 1080:
|
| 28 |
+
return 8
|
| 29 |
+
if min_dimension < 2160:
|
| 30 |
+
return 16
|
| 31 |
+
else:
|
| 32 |
+
return 16
|
utils/efficient_sam.py
CHANGED
|
@@ -45,3 +45,36 @@ def inference_with_box(
|
|
| 45 |
max_predicted_iou = curr_predicted_iou
|
| 46 |
selected_mask_using_predicted_iou = all_masks[m]
|
| 47 |
return selected_mask_using_predicted_iou
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
max_predicted_iou = curr_predicted_iou
|
| 46 |
selected_mask_using_predicted_iou = all_masks[m]
|
| 47 |
return selected_mask_using_predicted_iou
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def inference_with_point(
|
| 51 |
+
image: np.ndarray,
|
| 52 |
+
point: np.ndarray,
|
| 53 |
+
model: torch.jit.ScriptModule,
|
| 54 |
+
device: torch.device
|
| 55 |
+
) -> np.ndarray:
|
| 56 |
+
pts_sampled = torch.reshape(torch.tensor(point), [1, 1, -1, 2])
|
| 57 |
+
max_num_pts = pts_sampled.shape[2]
|
| 58 |
+
pts_labels = torch.ones(1, 1, max_num_pts)
|
| 59 |
+
img_tensor = ToTensor()(image)
|
| 60 |
+
|
| 61 |
+
predicted_logits, predicted_iou = model(
|
| 62 |
+
img_tensor[None, ...].to(device),
|
| 63 |
+
pts_sampled.to(device),
|
| 64 |
+
pts_labels.to(device),
|
| 65 |
+
)
|
| 66 |
+
predicted_logits = predicted_logits.cpu()
|
| 67 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
| 68 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 69 |
+
|
| 70 |
+
max_predicted_iou = -1
|
| 71 |
+
selected_mask_using_predicted_iou = None
|
| 72 |
+
for m in range(all_masks.shape[0]):
|
| 73 |
+
curr_predicted_iou = predicted_iou[m]
|
| 74 |
+
if (
|
| 75 |
+
curr_predicted_iou > max_predicted_iou
|
| 76 |
+
or selected_mask_using_predicted_iou is None
|
| 77 |
+
):
|
| 78 |
+
max_predicted_iou = curr_predicted_iou
|
| 79 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
| 80 |
+
return selected_mask_using_predicted_iou
|