Spaces:
Running
on
A100
Running
on
A100
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from torchvision.transforms import v2 as transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
import cv2
|
| 8 |
+
from torchvision.transforms.v2 import functional
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Constants
|
| 12 |
+
RESIZE_DIM = 224
|
| 13 |
+
NORMALIZE_MEAN = [0.485, 0.456, 0.406]
|
| 14 |
+
NORMALIZE_STD = [0.229, 0.224, 0.225]
|
| 15 |
+
|
| 16 |
+
# BreakHis tumor type labels (classes: ["TA", "MC", "F", "DC"])
|
| 17 |
+
BREAKHIS_LABELS = {
|
| 18 |
+
0: "Tubular Adenoma (TA) - Benign",
|
| 19 |
+
1: "Mucinous Carcinoma (MC) - Malignant",
|
| 20 |
+
2: "Fibroadenoma (F) - Benign",
|
| 21 |
+
3: "Ductal Carcinoma (DC) - Malignant"
|
| 22 |
+
}
|
| 23 |
+
GLEASON_LABELS = {
|
| 24 |
+
0: "Benign",
|
| 25 |
+
1: "Gleason 3",
|
| 26 |
+
2: "Gleason 4",
|
| 27 |
+
3: "Gleason 5"
|
| 28 |
+
|
| 29 |
+
}
|
| 30 |
+
BACH_LABELS = {"Benign": 0, "InSitu": 1, "Invasive": 2, "Normal": 3}
|
| 31 |
+
CRC_LABELS = {
|
| 32 |
+
"ADI": 0,
|
| 33 |
+
"BACK": 1,
|
| 34 |
+
"DEB": 2,
|
| 35 |
+
"LYM": 3,
|
| 36 |
+
"MUC": 4,
|
| 37 |
+
"MUS": 5,
|
| 38 |
+
"NORM": 6,
|
| 39 |
+
"STR": 7,
|
| 40 |
+
"TUM": 8,
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
print("Loading DinoV2 base model...")
|
| 44 |
+
dinov2 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_reg')
|
| 45 |
+
|
| 46 |
+
print("Loading custom pathology checkpoint...")
|
| 47 |
+
#ours = torch.load("/data/linears/teacher_checkpoint.pth")
|
| 48 |
+
|
| 49 |
+
ours = torch.load("/data/linears/teacher_checkpoint_load.pt")
|
| 50 |
+
checkpoint = ours#["teacher"]
|
| 51 |
+
checkpoint_new = {}
|
| 52 |
+
|
| 53 |
+
# Remove dino and ibot keys
|
| 54 |
+
#for key in list(checkpoint.keys()):
|
| 55 |
+
# if "dino" in str(key) or "ibot" in str(key):
|
| 56 |
+
# checkpoint.pop(key, None)
|
| 57 |
+
|
| 58 |
+
# Align keys with dinov2 state dict
|
| 59 |
+
#for key, keyb in zip(checkpoint.keys(), dinov2.state_dict().keys()):
|
| 60 |
+
# checkpoint_new[keyb] = checkpoint[key]
|
| 61 |
+
|
| 62 |
+
#checkpoint = checkpoint_new
|
| 63 |
+
|
| 64 |
+
# Update pos_embed
|
| 65 |
+
|
| 66 |
+
new_shape = checkpoint["pos_embed"]
|
| 67 |
+
dinov2.pos_embed = torch.nn.parameter.Parameter(new_shape)
|
| 68 |
+
dinov2.load_state_dict(checkpoint)
|
| 69 |
+
dinov2.eval()
|
| 70 |
+
|
| 71 |
+
#torch.save(dinov2.state_dict(), "teacher_checkpoint_load.pt")
|
| 72 |
+
|
| 73 |
+
def setup_linear(path):
|
| 74 |
+
print(f"Loading {path} linear classifier...")
|
| 75 |
+
# Load the best checkpoint from the latest run
|
| 76 |
+
linear_checkpoint = torch.load(path)
|
| 77 |
+
linear_weights = linear_checkpoint["state_dict"]["head.weight"]
|
| 78 |
+
linear_bias = linear_checkpoint["state_dict"]["head.bias"]
|
| 79 |
+
|
| 80 |
+
# Create linear layer
|
| 81 |
+
linear = torch.nn.Linear(1536, 4)
|
| 82 |
+
linear.weight.data = linear_weights
|
| 83 |
+
linear.bias.data = linear_bias
|
| 84 |
+
linear.eval()
|
| 85 |
+
return linear
|
| 86 |
+
|
| 87 |
+
def setup_linear_crc(path):
|
| 88 |
+
print(f"Loading {path} linear classifier...")
|
| 89 |
+
# Load the best checkpoint from the latest run
|
| 90 |
+
linear_checkpoint = torch.load(path)
|
| 91 |
+
linear_weights = linear_checkpoint["state_dict"]["head.weight"]
|
| 92 |
+
linear_bias = linear_checkpoint["state_dict"]["head.bias"]
|
| 93 |
+
|
| 94 |
+
# Create linear layer
|
| 95 |
+
linear = torch.nn.Linear(1536, 9)
|
| 96 |
+
linear.weight.data = linear_weights
|
| 97 |
+
linear.bias.data = linear_bias
|
| 98 |
+
linear.eval()
|
| 99 |
+
return linear
|
| 100 |
+
|
| 101 |
+
# Move models to GPU if available
|
| 102 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 103 |
+
dinov2 = dinov2.to(device)
|
| 104 |
+
|
| 105 |
+
breakhis_path = "/data/linears/logs/dino_vits16/offline/breakhis/20251030-190409559498_5b47c293/run_0/checkpoints/best.ckpt"
|
| 106 |
+
breakhis_linear = setup_linear(breakhis_path).to(device)
|
| 107 |
+
|
| 108 |
+
gleason_path = "/data/linears/logs/dino_vits16/offline/gleason_arvaniti/20251110-164046988851_35daf081/run_4/checkpoints/best.ckpt"
|
| 109 |
+
gleason_linear = setup_linear(gleason_path).to(device)
|
| 110 |
+
|
| 111 |
+
bach_path = "/data/linears/logs/dino_vits16/offline/bach/20251110-164046453320_0b82d41d/run_4/checkpoints/best.ckpt"
|
| 112 |
+
bach_linear = setup_linear(bach_path).to(device)
|
| 113 |
+
|
| 114 |
+
crc_path = "/data/linears/logs/dino_vits16/offline/crc/20251110-164127567401_f6ae5d68/run_4/checkpoints/best.ckpt"
|
| 115 |
+
crc_linear = setup_linear_crc(crc_path).to(device)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
print(f"Models loaded on {device}")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
model_transforms = transforms.Compose([
|
| 122 |
+
transforms.Resize(RESIZE_DIM),
|
| 123 |
+
transforms.CenterCrop(RESIZE_DIM),
|
| 124 |
+
transforms.ToDtype(torch.float32, scale=True),
|
| 125 |
+
transforms.Normalize(mean=NORMALIZE_MEAN, std=NORMALIZE_STD)
|
| 126 |
+
])
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def cv_path(path):
|
| 130 |
+
|
| 131 |
+
image = cv2.imread(path, flags=cv2.IMREAD_COLOR)
|
| 132 |
+
if image.ndim == 3:
|
| 133 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 134 |
+
|
| 135 |
+
if image.ndim == 2 and flags == cv2.IMREAD_COLOR:
|
| 136 |
+
image = image[:, :, np.newaxis]
|
| 137 |
+
image = np.asarray(image, dtype=np.uint8)
|
| 138 |
+
image = functional.to_image(image)
|
| 139 |
+
return image
|
| 140 |
+
|
| 141 |
+
def predict_breakhis(image):
|
| 142 |
+
|
| 143 |
+
return predict_class(image, breakhis_linear, "breakhis")
|
| 144 |
+
|
| 145 |
+
def predict_gleason(image):
|
| 146 |
+
|
| 147 |
+
return predict_class(image, gleason_linear, "gleason")
|
| 148 |
+
|
| 149 |
+
def predict_bach(image):
|
| 150 |
+
|
| 151 |
+
return predict_class(image, bach_linear, "bach")
|
| 152 |
+
|
| 153 |
+
def predict_crc(image):
|
| 154 |
+
|
| 155 |
+
return predict_class(image, crc_linear, "crc")
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def predict_class(image, linear, dataset):
|
| 159 |
+
"""
|
| 160 |
+
Predict breast tumor type from a histopathology image
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
image: PIL Image or numpy array
|
| 164 |
+
|
| 165 |
+
Returns:
|
| 166 |
+
dict: Probability distribution over tumor types
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
image = cv_path(image)
|
| 170 |
+
|
| 171 |
+
# Preprocess image
|
| 172 |
+
image_tensor = model_transforms(image).unsqueeze(0).to(device)
|
| 173 |
+
|
| 174 |
+
# Get embedding from DinoV2
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
embedding = dinov2(image_tensor)
|
| 177 |
+
# Get logits from linear classifier
|
| 178 |
+
logits = linear(embedding)
|
| 179 |
+
print(logits)
|
| 180 |
+
# Convert to probabilities
|
| 181 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
| 182 |
+
print(probs)
|
| 183 |
+
|
| 184 |
+
# Create output dictionary
|
| 185 |
+
probs_dict = {}
|
| 186 |
+
for idx, prob in enumerate(probs[0].cpu().numpy()):
|
| 187 |
+
if dataset == "breakhis":
|
| 188 |
+
probs_dict[BREAKHIS_LABELS[idx]] = float(prob)
|
| 189 |
+
elif dataset == "gleason":
|
| 190 |
+
probs_dict[GLEASON_LABELS[idx]] = float(prob)
|
| 191 |
+
elif dataset == "bach":
|
| 192 |
+
probs_dict[BACH_LABELS[idx]] = float(prob)
|
| 193 |
+
elif dataset == "crc":
|
| 194 |
+
probs_dict[CRC_LABELS[idx]] = float(prob)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
return probs_dict
|
| 198 |
+
|
| 199 |
+
# Create Gradio interface
|
| 200 |
+
breakhis = gr.Interface(
|
| 201 |
+
fn=predict_breakhis,
|
| 202 |
+
inputs=gr.Image(type="filepath", label="Upload Breast Histopathology Image"),
|
| 203 |
+
outputs=gr.Label(num_top_classes=4, label="Tumor Type Prediction"),
|
| 204 |
+
title="BreakHis Breast Tumor Classification",
|
| 205 |
+
description="""
|
| 206 |
+
Upload a breast histopathology image to predict the tumor type. Your image must be at 40X magnification, and ideally between 224x224 and 700x460 resolution. Do not otherwise modify your image.
|
| 207 |
+
|
| 208 |
+
This model uses a custom-trained DinoV2 foundation model for pathology images
|
| 209 |
+
with a linear classifier for BreakHis tumor classification.
|
| 210 |
+
|
| 211 |
+
**Tumor Types:**
|
| 212 |
+
- **Benign tumors:** Tubular Adenoma (TA), Fibroadenoma (F)
|
| 213 |
+
- **Malignant tumors:** Mucinous Carcinoma (MC), Ductal Carcinoma (DC)
|
| 214 |
+
|
| 215 |
+
These 4 classes were selected from the full BreakHis dataset as they have sufficient patient counts (≥7 patients) for robust evaluation.
|
| 216 |
+
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
|
| 217 |
+
""",
|
| 218 |
+
examples=["./data/breakhis/BreaKHis_v1/histology_slides/breast/benign/SOB/tubular_adenoma/SOB_B_TA_14-13200/40X/SOB_B_TA-14-13200-40-001.png",
|
| 219 |
+
"./data/breakhis/BreaKHis_v1/histology_slides/breast/malignant/SOB/mucinous_carcinoma/SOB_M_MC_14-10147/40X/SOB_M_MC-14-10147-40-001.png",
|
| 220 |
+
"./data/breakhis/BreaKHis_v1/histology_slides/breast/benign/SOB/fibroadenoma/SOB_B_F_14-14134/40X/SOB_B_F-14-14134-40-001.png",
|
| 221 |
+
], # You can add example image paths here
|
| 222 |
+
theme=gr.themes.Soft()
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
gleason = gr.Interface(
|
| 226 |
+
fn=predict_gleason,
|
| 227 |
+
inputs=gr.Image(type="filepath", label="Upload Prostate Cancer Image"),
|
| 228 |
+
outputs=gr.Label(num_top_classes=4, label="Gleason Tumor Type Prediction"),
|
| 229 |
+
title="Gleason Prostate Tumor Classification",
|
| 230 |
+
description="""
|
| 231 |
+
Upload a prostate cancer image to predict the tumor type. Your image must be at 40X magnification, and ideally between 224x224 and 750x750 resolution. Do not otherwise modify your image.
|
| 232 |
+
|
| 233 |
+
This model uses a custom-trained DinoV2 foundation model for pathology images
|
| 234 |
+
with a linear classifier for gleason tumor classification.
|
| 235 |
+
|
| 236 |
+
Images are classified as benign, Gleason pattern 3, 4 or 5.
|
| 237 |
+
|
| 238 |
+
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
|
| 239 |
+
""",
|
| 240 |
+
examples=["./data/arvaniti_gleason_patches/train_validation_patches_750/ZT111_4_A_1_12/ZT111_4_A_1_12_patch_13_class_2.jpg",
|
| 241 |
+
"./data/arvaniti_gleason_patches/train_validation_patches_750/ZT204_6_A_1_10/ZT204_6_A_1_10_patch_10_class_3.jpg",
|
| 242 |
+
#"",
|
| 243 |
+
], # You can add example image paths here
|
| 244 |
+
theme=gr.themes.Soft()
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
crc = gr.Interface(
|
| 248 |
+
fn=predict_crc,
|
| 249 |
+
inputs=gr.Image(type="filepath", label="Upload Colorectal Cancer Image"),
|
| 250 |
+
outputs=gr.Label(num_top_classes=9, label="CRC Tumor Type Prediction"),
|
| 251 |
+
title="Colorectal Tumor Classification",
|
| 252 |
+
description="""
|
| 253 |
+
Upload a colorectal cancer image to predict the tumor type. Your image must be at 20X magnification, and ideally at 224x224. Do not otherwise modify your image.
|
| 254 |
+
|
| 255 |
+
This model uses a custom-trained DinoV2 foundation model for pathology images
|
| 256 |
+
with a linear classifier for colorectal tumor classification.
|
| 257 |
+
|
| 258 |
+
The tissue classes are: Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR) and colorectal adenocarcinoma epithelium (TUM)
|
| 259 |
+
|
| 260 |
+
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
|
| 261 |
+
""",
|
| 262 |
+
examples=["./data/crc/CRC-VAL-HE-7K/ADI/ADI-TCGA-AAICEQFN.tif",
|
| 263 |
+
"./data/crc/CRC-VAL-HE-7K/BACK/BACK-TCGA-AARRNSTS.tif",
|
| 264 |
+
"./data/crc/CRC-VAL-HE-7K/DEB/DEB-TCGA-AANNAWLE.tif",
|
| 265 |
+
], # You can add example image paths here
|
| 266 |
+
theme=gr.themes.Soft()
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
bach = gr.Interface(
|
| 270 |
+
fn=predict_bach,
|
| 271 |
+
inputs=gr.Image(type="filepath", label="Upload Cancer Image"),
|
| 272 |
+
outputs=gr.Label(num_top_classes=4, label="Bach Tumor Type Prediction"),
|
| 273 |
+
title="Tumor Classification",
|
| 274 |
+
description="""
|
| 275 |
+
Upload a prostate cancer image to predict the tumor type. Your image must be at 20X magnification, and ideally between 224x224 and 1536x2048 resolution. Do not otherwise modify your image.
|
| 276 |
+
|
| 277 |
+
This model uses a custom-trained DinoV2 foundation model for pathology images
|
| 278 |
+
with a linear classifier for tumor classification.
|
| 279 |
+
|
| 280 |
+
Images are classified as benign, normal, invasive, inSitu
|
| 281 |
+
|
| 282 |
+
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
|
| 283 |
+
""",
|
| 284 |
+
examples=["./data/bach/ICIAR2018_BACH_Challenge/Photos/Benign/b001.tif",
|
| 285 |
+
"./data/bach/ICIAR2018_BACH_Challenge/Photos/Normal/n001.tif",
|
| 286 |
+
"./data/bach/ICIAR2018_BACH_Challenge/Photos/Benign/is001.tif",
|
| 287 |
+
"./data/bach/ICIAR2018_BACH_Challenge/Photos/Benign/iv001.tif"
|
| 288 |
+
], # You can add example image paths here
|
| 289 |
+
theme=gr.themes.Soft()
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
demo = gr.TabbedInterface([breakhis, gleason, crc, bach],["BreakHis", "Gleason", "CRC", "Bach"])
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
if __name__ == "__main__":
|
| 299 |
+
demo.launch(share=True)
|