Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load the Whisper model
|
| 6 |
+
model_id = "openai/whisper-tiny.en"
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
pipe = pipeline("automatic-speech-recognition", model=model_id, device=device)
|
| 9 |
+
|
| 10 |
+
def transcribe_audio(audio_file):
|
| 11 |
+
# Read audio file
|
| 12 |
+
audio_bytes = audio_file.read()
|
| 13 |
+
# Get transcription results
|
| 14 |
+
results = pipe(audio_bytes)
|
| 15 |
+
# Return the transcription
|
| 16 |
+
return results
|
| 17 |
+
|
| 18 |
+
# Streamlit interface
|
| 19 |
+
st.title("Speech to Text with Whisper")
|
| 20 |
+
audio_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3', 'ogg'])
|
| 21 |
+
|
| 22 |
+
if audio_file is not None:
|
| 23 |
+
# Display a button to transcribe the audio
|
| 24 |
+
if st.button('Transcribe'):
|
| 25 |
+
with st.spinner(f'Transcribing audio...'):
|
| 26 |
+
transcription = transcribe_audio(audio_file)
|
| 27 |
+
st.text_area("Transcription", transcription['text'], height=150)
|