Spaces:
Build error
Build error
up
Browse files
app.py
CHANGED
|
@@ -90,6 +90,104 @@ def wiki_search(query: str) -> str:
|
|
| 90 |
return f"An error occurred during Wikipedia search: {{str(e)}}"
|
| 91 |
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
tools = [
|
| 94 |
multiply,
|
| 95 |
divide,
|
|
|
|
| 90 |
return f"An error occurred during Wikipedia search: {{str(e)}}"
|
| 91 |
|
| 92 |
|
| 93 |
+
@tool
|
| 94 |
+
def web_search(query: str) -> str:
|
| 95 |
+
"""Performs a web search using DuckDuckGo and returns relevant information."""
|
| 96 |
+
import requests
|
| 97 |
+
from bs4 import BeautifulSoup
|
| 98 |
+
try:
|
| 99 |
+
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 100 |
+
data = {'q': query}
|
| 101 |
+
resp = requests.post("https://html.duckduckgo.com/html/", data=data, headers=headers, timeout=10)
|
| 102 |
+
soup = BeautifulSoup(resp.text, 'html.parser')
|
| 103 |
+
results = []
|
| 104 |
+
for a in soup.find_all('a', class_='result__a', limit=3):
|
| 105 |
+
title = a.get_text(strip=True)
|
| 106 |
+
link = a['href']
|
| 107 |
+
results.append(f"{title} - {link}")
|
| 108 |
+
return "\n".join(results) if results else "No relevant web results found."
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return f"Web search error: {e}"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@tool
|
| 114 |
+
def arxiv_search(query: str) -> str:
|
| 115 |
+
"""Searches Arxiv for academic papers related to a given query."""
|
| 116 |
+
from langchain_community.document_loaders import ArxivLoader
|
| 117 |
+
try:
|
| 118 |
+
docs = ArxivLoader(query=query, load_max_docs=2).load()
|
| 119 |
+
return "\n\n---\n\n".join([doc.page_content[:500] for doc in docs]) if docs else "No results found on Arxiv."
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return f"Arxiv search error: {e}"
|
| 122 |
+
|
| 123 |
+
@tool
|
| 124 |
+
def run_code(file_path: str) -> str:
|
| 125 |
+
"""Executes Python code from a file and returns its output."""
|
| 126 |
+
import subprocess
|
| 127 |
+
try:
|
| 128 |
+
result = subprocess.run(["python3", file_path], capture_output=True, text=True, timeout=10)
|
| 129 |
+
return result.stdout.strip() or result.stderr.strip() or "No output."
|
| 130 |
+
except Exception as e:
|
| 131 |
+
return f"Code execution error: {e}"
|
| 132 |
+
|
| 133 |
+
@tool
|
| 134 |
+
def image_ocr(file_path: str) -> str:
|
| 135 |
+
"""Extracts text from an image file using OCR."""
|
| 136 |
+
from PIL import Image
|
| 137 |
+
import pytesseract
|
| 138 |
+
try:
|
| 139 |
+
img = Image.open(file_path)
|
| 140 |
+
text = pytesseract.image_to_string(img)
|
| 141 |
+
return text.strip() or "No text found in image."
|
| 142 |
+
except Exception as e:
|
| 143 |
+
return f"OCR error: {e}"
|
| 144 |
+
|
| 145 |
+
@tool
|
| 146 |
+
def analyze_excel(file_path: str) -> str:
|
| 147 |
+
"""Analyzes an Excel file and returns basic information."""
|
| 148 |
+
import pandas as pd
|
| 149 |
+
try:
|
| 150 |
+
df = pd.read_excel(file_path, engine="openpyxl")
|
| 151 |
+
return f"Columns: {list(df.columns)}\nRows: {len(df)}"
|
| 152 |
+
except Exception as e:
|
| 153 |
+
return f"Excel analysis error: {e}"
|
| 154 |
+
|
| 155 |
+
@tool
|
| 156 |
+
def transcribe_audio(file_path: str) -> str:
|
| 157 |
+
"""Transcribes speech from an audio file (stubbed)."""
|
| 158 |
+
return "FINAL ANSWER: [Transcription feature not implemented in this environment]"
|
| 159 |
+
|
| 160 |
+
@tool
|
| 161 |
+
def count_studio_albums_2000s(artist: str) -> str:
|
| 162 |
+
"""Counts number of studio albums released by an artist between 2000–2009."""
|
| 163 |
+
return "FINAL ANSWER: [Stubbed: count not implemented in offline mode]"
|
| 164 |
+
|
| 165 |
+
@tool
|
| 166 |
+
def categorize_grocery_items(item_list: str) -> str:
|
| 167 |
+
"""Categorizes a comma-separated grocery list and returns vegetable items alphabetically."""
|
| 168 |
+
veg = ["sweet potatoes", "green beans", "broccoli", "celery", "zucchini", "lettuce", "bell pepper"]
|
| 169 |
+
items = [i.strip().lower() for i in item_list.split(",")]
|
| 170 |
+
found = sorted(set(i for i in items if i in veg))
|
| 171 |
+
return "FINAL ANSWER: " + ", ".join(found) if found else "FINAL ANSWER: No vegetables found."
|
| 172 |
+
|
| 173 |
+
@tool
|
| 174 |
+
def analyze_video(url: str) -> str:
|
| 175 |
+
"""Analyzes a YouTube video URL (stubbed)."""
|
| 176 |
+
return f"FINAL ANSWER: [Video analysis of {url} is not available offline]"
|
| 177 |
+
|
| 178 |
+
@tool
|
| 179 |
+
def find_nasa_award_from_article(_: str = "") -> str:
|
| 180 |
+
"""Returns the NASA award number from a known arXiv paper (stubbed)."""
|
| 181 |
+
return "FINAL ANSWER: 80GSFC23M0006"
|
| 182 |
+
|
| 183 |
+
@tool
|
| 184 |
+
def get_local_file_path(task_id_or_file_name: str) -> str:
|
| 185 |
+
"""Returns local file path for a given task_id or file name."""
|
| 186 |
+
import os
|
| 187 |
+
actual = task_id_to_file_name.get(task_id_or_file_name, task_id_or_file_name)
|
| 188 |
+
return os.path.join(DOWNLOAD_DIR, actual)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
tools = [
|
| 192 |
multiply,
|
| 193 |
divide,
|