File size: 39,551 Bytes
931b71f
af6bb26
5e9286a
a23a2a4
7b7cc25
215212f
67377a2
215212f
978158a
6ee7af6
27d41ff
af6bb26
 
 
005002e
5e827a9
27d41ff
 
005002e
af6bb26
 
 
9bf3bb5
aff7959
9bf3bb5
 
 
 
 
 
 
 
 
7b7cc25
 
 
 
 
 
 
 
 
 
 
 
f039ca9
0aa7a3e
7b7cc25
 
 
 
 
6ee7af6
 
 
 
 
 
 
 
 
cd52fb2
6ee7af6
cd52fb2
7b7cc25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e3bf4
6e80299
966bf4d
e4e3bf4
966bf4d
 
 
 
 
38bab31
6a2de9d
966bf4d
 
6e80299
966bf4d
769e479
8128fc3
411987b
966bf4d
 
 
 
 
 
 
 
 
411987b
 
 
 
 
 
 
 
966bf4d
 
 
 
6a2de9d
966bf4d
784f38c
7b7cc25
966bf4d
 
 
 
784f38c
 
966bf4d
784f38c
7b7cc25
d1936e2
6a2de9d
d1936e2
411987b
7b7cc25
919c552
0aa7a3e
 
6ee7af6
 
 
 
 
 
 
 
 
57c6dd9
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
0aa7a3e
 
a720b38
 
 
 
 
27d41ff
183fffa
b1fb154
a720b38
c294a46
27d41ff
 
 
c294a46
 
 
 
 
 
 
 
 
 
4eb14c9
183fffa
 
c294a46
 
 
183fffa
 
a720b38
 
183fffa
7b7cc25
 
 
 
 
 
 
 
 
0aa7a3e
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d2496
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4070cfe
 
 
 
 
 
 
 
 
aff7959
4070cfe
 
 
 
 
 
 
 
 
 
 
0d0d869
 
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d2496
 
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ddb276
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd52fb2
6ee7af6
 
 
cd52fb2
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44788ec
6ee7af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf3bb5
 
5a1ab40
7c74c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec45a45
d1936e2
 
5d85359
efff646
 
 
 
7c74c7e
 
7b7cc25
5e827a9
7b7cc25
 
 
7c74c7e
 
 
 
919c552
5e827a9
 
 
7b7cc25
 
 
 
 
 
7c74c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f039ca9
4070cfe
360feb1
 
 
7c74c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e3bf4
0aa7a3e
 
 
7c74c7e
 
 
 
 
 
011b5f0
db6f51b
ee08b7d
011b5f0
 
 
27d41ff
011b5f0
27d41ff
d04a69f
fa1dbbc
d04a69f
 
 
 
011b5f0
 
 
59764d5
931b71f
27d41ff
 
011b5f0
 
d04a69f
011b5f0
 
d04a69f
931b71f
27d41ff
 
011b5f0
 
00b7c00
 
931b71f
d04a69f
fa1dbbc
 
931b71f
 
19d2496
059d3ee
32717a9
a048256
19d2496
4c33f94
 
 
03acd9a
931b71f
19d2496
94f6f84
19d2496
835e964
19d2496
4c33f94
03acd9a
19d2496
3f37c5f
 
db6f51b
6a50b18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import streamlit as st
import polars as pl
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, logging, AutoModelForCausalLM
import torch
import os
import httpx
import languagecodes

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Language options and mappings
favourite_langs = {"Romanian": "ro", "German": "de", "English": "en", "-----": "-----"}
df = pl.read_parquet("isolanguages.parquet")
non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos} # {'Romanian': ('ro', 'rum', 'ron')}
name_to_iso1 = {iso[0]: iso[1] for iso in non_empty_isos} # {'Romanian': 'ro', 'German': 'de'}
# langs = ["German", "Romanian", "English", "French", "Spanish", "Italian"]
langs = list(favourite_langs.keys())
langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
# all_langs = languagecodes.iso_languages_byname
# iso1_to_name = {codes[0]: lang for entry in all_langs for lang, codes in entry.items()} # {'ro': 'Romanian', 'de': 'German'}
iso1_to_name = {iso[1]: iso[0] for iso in non_empty_isos} # {'ro': 'Romanian', 'de': 'German'}

def timer(func):
    import time
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        execution_time = end_time - start_time
        print(f"Function '{func.__name__}' executed in {execution_time:.4f} seconds.")
        return result
    return wrapper

models = ["Helsinki-NLP", "QUICKMT", "Argos", "Lego-MT/Lego-MT", "HPLT", "HPLT-OPUS", "Google",
          "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
          "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
          "Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa",
          "Helsinki-NLP/opus-mt-tc-bible-big-roa-en",
          "facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
          "facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
          "facebook/m2m100_418M", "facebook/m2m100_1.2B",
          "bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
          "bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
          "t5-small", "t5-base", "t5-large",
          "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
          "google/madlad400-3b-mt", "Heng666/madlad400-3b-mt-ct2", "Heng666/madlad400-3b-mt-ct2-int8", "Heng666/madlad400-7b-mt-ct2-int8",
          "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
         "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
          "HuggingFaceTB/SmolLM3-3B", "winninghealth/WiNGPT-Babel-2",
         "tencent/Hunyuan-MT-7B",
         "openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6",
         ]
class Translators:
    def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
        self.model_name = model_name
        self.sl, self.tl = sl, tl
        self.input_text = input_text
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
    def google(self):  
        url = os.environ['GCLIENT'] + f'sl={self.sl}&tl={self.tl}&q={self.input_text}'
        response = httpx.get(url)
        return response.json()[0][0][0]

    def hplt(self, opus = False):
        # langs = ['ar', 'bs', 'ca', 'en', 'et', 'eu', 'fi', 'ga', 'gl', 'hi', 'hr', 'is', 'mt', 'nn', 'sq', 'sw', 'zh_hant']
        hplt_models = ['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
                  'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
                  'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
                  'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']
        if opus:
            hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt_opus' # HPLT/translate-en-hr-v1.0-hplt_opus
        else:
            hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt' # HPLT/translate-en-hr-v1.0-hplt
        if f'{self.sl}-{self.tl}' in hplt_models:
            pipe = pipeline("translation", model=hplt_model, device=self.device)
            translation = pipe(self.input_text)
            translated_text = translation[0]['translation_text']
            message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {hplt_model}.'
        else:
            translated_text = f'HPLT model from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} not available!'
            message = f"Available models: {', '.join(hplt_models)}"
        return translated_text, message

    @staticmethod
    def quickmttranslate(model_path, input_text):
        from quickmt import Translator
        # 'auto' auto-detects GPU, set to "cpu" to force CPU inference
        device = 'gpu' if torch.cuda.is_available() else 'cpu'
        translator = Translator(str(model_path), device = device)       
        # translation = Translator(f"./quickmt-{self.sl}-{self.tl}/", device="auto", inter_threads=2)       
        # set beam size to 1 for faster speed (but lower quality)
        translation = translator(input_text, beam_size=5, max_input_length = 512, max_decoding_length = 512)
        # print(model_path, input_text, translation)
        return translation

    @staticmethod
    def quickmtdownload(model_name):
        from quickmt.hub import hf_download
        from pathlib import Path
        model_path = Path("/quickmt/models") / model_name
        if not model_path.exists():
            hf_download(
            model_name = f"quickmt/{model_name}",
            output_dir=Path("/quickmt/models") / model_name,
        )
        return model_path
            
    def quickmt(self):
        model_name = f"quickmt-{self.sl}-{self.tl}"
        # from quickmt.hub import hf_list
        # quickmt_models = [i.split("/quickmt-")[1] for i in hf_list()]
        # quickmt_models.sort()
        # print(quickmt_models)
        quickmt_models = ['ar-en', 'bn-en', 'cs-en', 'da-en', 'de-en', 'el-en', 'en-ar', 'en-bn', 'en-cs', 'en-de', 'en-el', 'en-es',
                  'en-fa', 'en-fr', 'en-he', 'en-hi', 'en-hu', 'en-id', 'en-it', 'en-ja', 'en-ko', 'en-lv', 'en-pl', 'en-pt',
                  'en-ro', 'en-ru', 'en-th', 'en-tr', 'en-ur', 'en-vi', 'en-zh', 'es-en', 'fa-en', 'fr-en', 'he-en', 'hi-en',
                  'hu-en', 'id-en', 'it-en', 'ja-en', 'ko-en', 'lv-en', 'pl-en', 'pt-en', 'ro-en', 'ru-en', 'th-en', 'tr-en', 'ur-en', 'vi-en', 'zh-en']
        # available_languages = list(set([lang for model in quickmt_models for lang in model.split('-')]))
        # available_languages.sort()
        available_languages = ['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he', 'hi', 'hu',
                               'id', 'it', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru', 'th', 'tr', 'ur', 'vi', 'zh']
        # Direct translation model
        if f"{self.sl}-{self.tl}" in quickmt_models:
            model_path = Translators.quickmtdownload(model_name)
            translated_text = Translators.quickmttranslate(model_path, self.input_text)
            message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {model_name}.'
        # Pivot language English
        elif self.sl in available_languages and self.tl in available_languages:
            model_name = f"quickmt-{self.sl}-en"
            model_path = Translators.quickmtdownload(model_name)
            entranslation = Translators.quickmttranslate(model_path, self.input_text)
            model_name = f"quickmt-en-{self.tl}"
            model_path = Translators.quickmtdownload(model_name)
            translated_text = Translators.quickmttranslate(model_path, entranslation)
            message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with Quickmt using pivot language English.'
        else:
            translated_text = f'No Quickmt model available for translation from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]}!'
            message = f"Available models: {', '.join(quickmt_models)}"
        return translated_text, message
    
    @staticmethod
    def download_argos_model(from_code, to_code):
        import argostranslate.package
        print('Downloading model', from_code, to_code) 
        # Download and install Argos Translate package
        argostranslate.package.update_package_index()
        available_packages = argostranslate.package.get_available_packages()
        package_to_install = next(
            filter(lambda x: x.from_code == from_code and x.to_code == to_code, available_packages)
        )
        argostranslate.package.install_from_path(package_to_install.download())
  
    def argos(self):
        import argostranslate.translate, argostranslate.package
        try:
            Translators.download_argos_model(self.sl, self.tl) # Download model
            translated_text = argostranslate.translate.translate(self.input_text, self.sl, self.tl) # Translate
        except StopIteration:
            # packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in argostranslate.package.get_available_packages())
            packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in argostranslate.package.get_available_packages())
            translated_text = f"No Argos model for {self.sl} to {self.tl}. Try other model or languages combination from the available Argos models: {packages_info}."
        except Exception as error:
            translated_text = error
        return translated_text

    def hunyuan(self):
        # ZH_CODES = {"Chinese": "zh", "Traditional Chinese": "zh-Hant", "Cantonese": "yue"}
        # if self.sl in ZH_CODES.keys() or self.tl in ZH_CODES.keys():
        #     prompt = f"把下面的文本翻译成{self.tl},不要额外解释。\n\n{self.input_text}"
        # else:
        prompt = f"Translate the following segment into {self.tl}, without additional explanation.\n\n{self.input_text}."
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto", dtype=torch.bfloat16)
        systemprompt = {"role": "system", "content": "You are a professional translator, translating in a formal tone and providing only translation, no other comments or explanations"}
        messages = [systemprompt, {"role": "user", "content": prompt}]
        # Tokenize the conversation
        tokenized_chat = tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt"
        )
        # Generate response
        temperature = 0.7
        with torch.no_grad():
            outputs = model.generate(
                tokenized_chat.to(model.device),
                max_new_tokens=512,
                temperature=temperature,
                top_k=20,
                top_p=0.95,
                repetition_penalty=1.05,
                do_sample=True if temperature > 0 else False,
                pad_token_id=tokenizer.eos_token_id
            )
  
        # outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=512, top_k=20, top_p=0.6, repetition_penalty=1.05, temperature=0.7)
        # output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        output_text = tokenizer.decode(outputs[0][tokenized_chat.shape[-1]:], skip_special_tokens=True) # Decode only the new tokens
        return output_text

    def simplepipe(self):
        try:
            pipe = pipeline("translation", model=self.model_name, device=self.device)                
            translation = pipe(self.input_text)
            message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {self.model_name}.'
            return translation[0]['translation_text'], message
        except Exception as error:
            return f"Error translating with model: {self.model_name}! Try other available language combination or model.", error
    
    def HelsinkiNLP_mulroa(self):
        try:
            pipe = pipeline("translation", model=self.model_name, device=self.device)                
            iso1to3 = {iso[1]: iso[3] for iso in non_empty_isos} # {'ro': 'ron'}
            iso3tl = iso1to3.get(self.tl) # 'deu', 'ron', 'eng', 'fra'
            translation = pipe(f'>>{iso3tl}<< {self.input_text}')
            return translation[0]['translation_text'], f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {self.model_name}.'
        except Exception as error:
            return f"Error translating with model: {self.model_name}! Try other available language combination.", error
    
    def HelsinkiNLP(self):
        try: # Standard bilingual model
            model_name = f"Helsinki-NLP/opus-mt-{self.sl}-{self.tl}"
            pipe = pipeline("translation", model=model_name, device=self.device)
            translation = pipe(self.input_text)
            return translation[0]['translation_text'], f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {model_name}.'
        except EnvironmentError:
            try: # Tatoeba models
                model_name = f"Helsinki-NLP/opus-tatoeba-{self.sl}-{self.tl}"
                pipe = pipeline("translation", model=model_name, device=self.device)
                translation = pipe(self.input_text)
                return translation[0]['translation_text'], f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {model_name}.'
            except EnvironmentError as error:
                self.model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul" # Last resort: try multi to multi
                return self.HelsinkiNLP_mulroa()
        except KeyError as error:
            return f"Error: Translation direction {self.sl} to {self.tl} is not supported by Helsinki Translation Models", error
   
    def LLaMAX(self):
        pipe = pipeline("text-generation", model="LLaMAX/LLaMAX3-8B")
        messages = [
            {"role": "user", "content": f"Translate the following text from {self.sl} to {self.sl}: {self.input_text}"},
        ]
        return pipe(messages)[0]["generated_text"]
    
    def LegoMT(self):
        from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
        model = M2M100ForConditionalGeneration.from_pretrained(self.model_name) # "Lego-MT/Lego-MT"
        tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
        tokenizer.src_lang = self.sl
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        
    def madlad(self):
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
        tokenizer = T5Tokenizer.from_pretrained(self.model_name)
        text = f"<2{self.tl}> {self.input_text}"
        # input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
        # outputs = model.generate(input_ids=input_ids)    
        # return tokenizer.decode(outputs[0], skip_special_tokens=True)
        # Use a pipeline as a high-level helper
        translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
        translated_text = translator(text, max_length=512)
        return translated_text[0]['translation_text']

    def madladct2(self):
        import ctranslate2
        from sentencepiece import SentencePieceProcessor
        from huggingface_hub import snapshot_download
        
        model_path = snapshot_download(self.model_name)
        
        tokenizer = SentencePieceProcessor()
        tokenizer.load(f"{model_path}/spiece.model")
        translator = ctranslate2.Translator(model_path)
        
        input_tokens = tokenizer.encode(f"<2{self.tl}> {self.input_text}", out_type=str)
        results = translator.translate_batch(
            [input_tokens],
            batch_type="tokens",
            max_batch_size=512,
            beam_size=1,
            no_repeat_ngram_size=1,
            repetition_penalty=2,
        )
        translated_text = tokenizer.decode(results[0].hypotheses[0])
        return translated_text
    
    def smollm(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)
        prompt = f"""Translate the following {self.sl} text to {self.tl}, generating only the translated text and maintaining the original meaning and tone:
        {self.input_text}
        Translation:"""
        inputs = tokenizer(prompt, return_tensors="pt")
        outputs = model.generate(
            inputs.input_ids,
            max_length=len(inputs.input_ids[0]) + 150,
            temperature=0.3,
            do_sample=True
        ) 
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        print(response)
        return response.split("Translation:")[-1].strip()

    def flan(self):
        tokenizer = T5Tokenizer.from_pretrained(self.model_name, legacy=False)
        model = T5ForConditionalGeneration.from_pretrained(self.model_name)
        prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
        outputs = model.generate(input_ids)
        return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

    def tfive(self):
        tokenizer = T5Tokenizer.from_pretrained(self.model_name)
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
        prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
        output_ids = model.generate(input_ids, max_length=512) # Perform translation
        translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() # Decode the translated text
        return translated_text
    
    def mbart_many_to_many(self):
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
        # translate source to target
        tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(
            **encoded,
            forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[self.tl]]
        )
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    
    def mbart_one_to_many(self):
        # translate from English
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name, src_lang="en_XX")
        model_inputs = tokenizer(self.input_text, return_tensors="pt")
        langid = languagecodes.mbart_large_languages[self.tl]
        generated_tokens = model.generate(
            **model_inputs,
            forced_bos_token_id=tokenizer.lang_code_to_id[langid]
        )
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    
    def mbart_many_to_one(self):
        # translate to English
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
        tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded)
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        
    def mtom(self):
        from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
        model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
        tokenizer.src_lang = self.sl
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

    def bigscience(self):  
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
        self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
        inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
        outputs = model.generate(inputs)
        translation = tokenizer.decode(outputs[0])
        translation = translation.replace('<pad> ', '').replace('</s>', '')
        return translation
    
    def bloomz(self):  
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)
        self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
        # inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
        inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
        outputs = model.generate(inputs)
        translation = tokenizer.decode(outputs[0])
        translation = translation.replace('<pad> ', '').replace('</s>', '')
        translation = translation.split('Translation:')[-1].strip() if 'Translation:' in translation else translation.strip()
        return translation
    
    def nllb(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name, src_lang=self.sl)
        # model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, device_map="auto", torch_dtype=torch.bfloat16)
        model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
        translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
        translated_text = translator(self.input_text, max_length=512)
        return translated_text[0]['translation_text']
   
    def wingpt(self):
        model = AutoModelForCausalLM.from_pretrained(
           self.model_name,
           dtype="auto",
           device_map="auto"
        )
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        # input_json = '{"input_text": self.input_text}'
        messages = [
           {"role": "system", "content": f"Translate this to {self.tl} language"}, 
           {"role": "user", "content": self.input_text}
        ]
        
        text = tokenizer.apply_chat_template(
           messages,
           tokenize=False,
           add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
        
        generated_ids = model.generate(
           **model_inputs,
           max_new_tokens=512,
           temperature=0.1
        )
        
        generated_ids = [
           output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))
        output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        result = output.split('\n')[-1].strip() if '\n' in output else output.strip()
        return result
    
    def eurollm(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)  
        prompt = f"{self.sl}: {self.input_text} {self.tl}:"
        inputs = tokenizer(prompt, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=512)
        output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        print(output)
        # result = output.rsplit(f'{self.tl}:')[-1].strip() if f'{self.tl}:' in output else output.strip()
        result = output.rsplit(f'{self.tl}:')[-1].strip() if '\n' in output or f'{self.tl}:' in output else output.strip()
        return result
    
    def eurollm_instruct(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)
        text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {self.sl} source text to {self.tl}:\n{self.sl}: {self.input_text} \n{self.tl}: <|im_end|>\n<|im_start|>assistant\n'
        inputs = tokenizer(text, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=512)
        output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        if f'{self.tl}:' in output:
            output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
        return output

    def teuken(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            trust_remote_code=True,
            torch_dtype=torch.bfloat16,
        )
        model = model.to(device).eval()
        tokenizer = AutoTokenizer.from_pretrained(
            self.model_name,
            use_fast=False,
            trust_remote_code=True,
        )
        translation_prompt = f"Translate the following text from {self.sl} into {self.tl}: {self.input_text}"
        messages = [{"role": "User", "content": translation_prompt}]
        prompt_ids = tokenizer.apply_chat_template(messages, chat_template="EN", tokenize=True, add_generation_prompt=False, return_tensors="pt")
        prediction = model.generate(
            prompt_ids.to(model.device),
            max_length=512,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=0.7,
            num_return_sequences=1,
        )
        translation = tokenizer.decode(prediction[0].tolist())
        return translation

    def unbabel(self):
        pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
        messages = [{"role": "user",
                     "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}:"}]
        prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
        tokenized_input = pipe.tokenizer(self.input_text, return_tensors="pt")
        num_input_tokens = len(tokenized_input["input_ids"][0])
        max_new_tokens = round(num_input_tokens + 0.75 * num_input_tokens)
        outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False)
        translated_text = outputs[0]["generated_text"]
        print(f"Input chars: {len(input_text)}", f"Input tokens: {num_input_tokens}", f"max_new_tokens: {max_new_tokens}",
              "Chars to tokens ratio:", round(len(input_text) / num_input_tokens, 2), f"Raw translation: {translated_text}")
        markers = ["<end_of_turn>", "<|im_end|>", "<|im_start|>assistant"] # , "\n" 
        for marker in markers:
            if marker in translated_text:
                translated_text = translated_text.split(marker)[1].strip()
        translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text
        translated_text = translated_text.split("Translated text:")[0].strip() if "Translated text:" in translated_text else translated_text
        split_translated_text = translated_text.split('\n', translated_text.count('\n'))
        translated_text = '\n'.join(split_translated_text[:input_text.count('\n')+1])
        return translated_text

    def bergamot(model_name: str = 'deen', sl: str = 'de', tl: str = 'en', input_text: str = 'Hallo, mein Freund'):
        try:
            import bergamot
            # input_text = [input_text] if isinstance(input_text, str) else input_text           
            config = bergamot.ServiceConfig(numWorkers=4)
            service = bergamot.Service(config)
            model = service.modelFromConfigPath(f"./{model_name}/bergamot.config.yml")
            options = bergamot.ResponseOptions(alignment=False, qualityScores=False, HTML=False)
            rawresponse = service.translate(model, bergamot.VectorString(input_text), options)
            translated_text: str = next(iter(rawresponse)).target.text
            message_text = f"Translated from {sl} to {tl} with Bergamot {model_name}."
        except Exception as error:
            response = error
        return translated_text, message_text

@timer
def translate_text(model_name: str, s_language: str, t_language: str, input_text: str) -> tuple[str, str]:
    """
    Translates the input text from the source language to the target language  using a specified model.

    Parameters:
        input_text (str): The source text to be translated
        s_language (str): The source language of the input text
        t_language (str): The target language in which the input text is translated
        model_name (str): The selected translation model name

    Returns:
        tuple: 
            translated_text(str): The input text translated to the selected target language
            message_text(str):  A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
    
    Example:
        >>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
        ("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
    """
    
    sl = all_langs[s_language][0]
    tl = all_langs[t_language][0]
    if not input_text.strip() or input_text.strip() == '':
        translated_text = f'No input text entered!'
        message_text = 'Please enter a text to translate!'
        return translated_text, message_text
    if sl == tl:
        translated_text = f'Source language {s_language} identical to target language {t_language}!'
        message_text = 'Please choose different target and source language!'
        return translated_text, message_text
    message_text = f'Translated from {s_language} to {t_language} with {model_name}'
    translated_text = None
    try:
        if model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
            translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
        
        elif "-mul" in model_name.lower() or "mul-" in model_name.lower() or "-roa" in model_name.lower():
            translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP_mulroa()
        
        elif model_name == "Helsinki-NLP":
            translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()

        elif model_name == "QUICKMT":
            translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()

        elif "HPLT" in model_name:
            if model_name == "HPLT-OPUS":
                translated_text, message = Translators(model_name, sl, tl, input_text).hplt(opus = True)
            else:
                translated_text, message = Translators(model_name, sl, tl, input_text).hplt()
                
        elif model_name == 'Argos':
            translated_text = Translators(model_name, sl, tl, input_text).argos()
    
        elif model_name == 'Google':
            translated_text = Translators(model_name, sl, tl, input_text).google()
    
        elif "m2m" in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).mtom()

        elif "lego" in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).LegoMT()
        
        elif model_name.startswith('t5'):
            translated_text = Translators(model_name, s_language, t_language, input_text).tfive()
            
        elif 'flan' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).flan()

        elif 'mt-ct2' in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).madladct2()
        
        elif 'madlad' in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).madlad()
            
        elif 'mt0' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).bigscience()
    
        elif 'bloomz' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).bloomz()
            
        elif 'nllb' in model_name.lower():
            nnlbsl, nnlbtl = languagecodes.nllb_language_codes[s_language], languagecodes.nllb_language_codes[t_language]
            translated_text = Translators(model_name, nnlbsl, nnlbtl, input_text).nllb()
        
        elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
            translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_many()
    
        elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
            translated_text = Translators(model_name, s_language, t_language, input_text).mbart_one_to_many()
    
        elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
            translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
        
        elif 'teuken' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).teuken()
    
        elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
            translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
        
        elif model_name == "utter-project/EuroLLM-1.7B":
            translated_text = Translators(model_name, s_language, t_language, input_text).eurollm()
                
        elif 'Unbabel' in model_name:   
            translated_text = Translators(model_name, s_language, t_language, input_text).unbabel()
            
        elif model_name == "HuggingFaceTB/SmolLM3-3B":
            translated_text = Translators(model_name, s_language, t_language, input_text).smollm()

        elif model_name == "winninghealth/WiNGPT-Babel-2":      
            translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()

        elif "LLaMAX" in model_name:      
            translated_text = Translators(model_name, s_language, t_language, input_text).LLaMAX()            

        elif model_name == "Bergamot":
            translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()

        elif "Hunyuan" in model_name:      
            translated_text = Translators(model_name, s_language, t_language, input_text).hunyuan()

    except Exception as error:
        translated_text = error
    finally:
        print(input_text, translated_text, message_text)
        return translated_text, message_text

# App layout
st.header("Text Machine Translation", divider="gray", help="Text Machine Translation Streamlit App with Open Source Models")
input_text = st.text_area("Enter text to translate:", placeholder="Enter text to translate, maximum 512 characters!", max_chars=512)

# Initialize session state if not already set
if "sselected_language" not in st.session_state:
    st.session_state["sselected_language"] = langs[0]
if "tselected_language" not in st.session_state:
    st.session_state["tselected_language"] = langs[1]
if "model_name" not in st.session_state:
    st.session_state["model_name"] = models[1]

# Model selection FIRST
model_name = st.selectbox("Select a model:", models, 
                          index=models.index(st.session_state["model_name"]))

# Create columns for language selection
scol, swapcol, tcol = st.columns([3, 1, 3])

with scol:
    sselected_language = st.selectbox("Source language:", langs, 
                                      index=langs.index(st.session_state["sselected_language"]))
with swapcol:
    if st.button("🔄 Swap"):
        st.session_state["model_name"] = model_name  # Preserve model
        st.session_state["sselected_language"], st.session_state["tselected_language"] = \
            st.session_state["tselected_language"], st.session_state["sselected_language"]
        st.rerun()
with tcol:
    tselected_language = st.selectbox("Target language:", langs, 
                                      index=langs.index(st.session_state["tselected_language"]))

# Language codes
sl = name_to_iso1[st.session_state["sselected_language"]]
tl = name_to_iso1[st.session_state["tselected_language"]]

# Store selections
st.session_state["sselected_language"] = sselected_language
st.session_state["tselected_language"] = tselected_language
st.session_state["model_name"] = model_name

st.write(f'Selected language combination: {sselected_language} - {tselected_language}. Selected model: {model_name}')

with st.container(border=None, width="stretch", height="content", horizontal=False, horizontal_alignment="center", vertical_alignment="center", gap="small"):
    submit_button = st.button("Translate")
# Show text area with placeholder also before translating
# translated_textarea = st.empty()
# message_textarea = st.empty()
# translated_textarea.text_area(":green[Translation:]", placeholder="Translation area", value='')
# message_textarea.text_input(":blue[Messages:]", placeholder="Messages area", value='')

if submit_button: # Handle the submit button click
    with st.spinner("Translating...", show_time=True):
        translated_text, message = translate_text(model_name, sselected_language, tselected_language, input_text)       
    print(f"Translated from {sselected_language} to {tselected_language} using {model_name}.", input_text, translated_text)
    # Display the translated text
    # translated_textarea.text_area(":green[Translation:]", value=translated_text)
    # message_textarea.text_input(":blue[Message:]", value=message)
    st.text_area(":green[Translation:]", value=translated_text)
    # st.success(message, icon=":material/check:") st.info(message, icon="ℹ️"), st.warning(message, icon=":material/warning:"), error(message, icon=":material/error:"), st.exception
    st.info(message, icon=":material/info:")
    # st.text_input(":blue[Messages:]", value=message)
    # st.rerun()