TiberiuCristianLeon commited on
Commit
55eea2f
·
verified ·
1 Parent(s): 469ff10

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -33
app.py CHANGED
@@ -44,7 +44,7 @@ models = ["Helsinki-NLP", "QUICKMT", "Argos", "Lego-MT/Lego-MT", "HPLT", "HPLT-O
44
  "t5-small", "t5-base", "t5-large",
45
  "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
46
  "google/madlad400-3b-mt", "Heng666/madlad400-3b-mt-ct2", "Heng666/madlad400-3b-mt-ct2-int8", "Heng666/madlad400-7b-mt-ct2-int8",
47
- "BSC-LT/salamandraTA-2b-instruct", "BSC-LT/salamandraTA-7b-instruct", "BSC-LT/salamandraTA-2B-academic", "BSC-LT/salamandraTA-7B-academic",
48
  "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
49
  "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
50
  "HuggingFaceTB/SmolLM3-3B",
@@ -214,35 +214,6 @@ class Translators:
214
  pipe = pipeline("text-generation", model=self.model_name)
215
  messages = [{"role": "user", "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text} \n{self.tl}:"}]
216
  return pipe(messages, max_new_tokens=512, early_stopping=True, num_beams=5)[0]["generated_text"][1]["content"]
217
-
218
- def salamandrata(self):
219
- text = f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text} \n{self.tl}:"
220
- tokenizer = AutoTokenizer.from_pretrained(self.model_name)
221
- model = AutoModelForCausalLM.from_pretrained(
222
- self.model_name,
223
- device_map="auto",
224
- dtype=torch.bfloat16
225
- )
226
- message = [{"role": "user", "content": text}]
227
- from datetime import datetime
228
- date_string = datetime.today().strftime('%Y-%m-%d')
229
- prompt = tokenizer.apply_chat_template(
230
- message,
231
- tokenize=False,
232
- add_generation_prompt=True,
233
- date_string=date_string
234
- )
235
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
236
- attention_mask = inputs["attention_mask"]
237
- input_length = inputs.shape[1]
238
- outputs = model.generate(input_ids=inputs.to(model.device),
239
- max_new_tokens=512,
240
- early_stopping=True,
241
- num_beams=5,
242
- attention_mask=attention_mask,
243
- pad_token_id=tokenizer.eos_token_id,
244
- eos_token_id=tokenizer.eos_token_id)
245
- return tokenizer.decode(outputs[0, input_length:], skip_special_tokens=True)
246
 
247
  def HelsinkiNLP_mulroa(self):
248
  try:
@@ -621,9 +592,6 @@ def translate_text(model_name: str, s_language: str, t_language: str, input_text
621
  elif model_name == 'Google':
622
  translated_text = Translators(model_name, sl, tl, input_text).google()
623
 
624
- elif "academic" in model_name.lower():
625
- translated_text = Translators(model_name, s_language, t_language, input_text).salamandrata()
626
-
627
  elif "salamandra" in model_name.lower():
628
  translated_text = Translators(model_name, s_language, t_language, input_text).salamandratapipe()
629
 
 
44
  "t5-small", "t5-base", "t5-large",
45
  "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
46
  "google/madlad400-3b-mt", "Heng666/madlad400-3b-mt-ct2", "Heng666/madlad400-3b-mt-ct2-int8", "Heng666/madlad400-7b-mt-ct2-int8",
47
+ "BSC-LT/salamandraTA-2b-instruct", "BSC-LT/salamandraTA-7b-instruct",
48
  "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
49
  "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
50
  "HuggingFaceTB/SmolLM3-3B",
 
214
  pipe = pipeline("text-generation", model=self.model_name)
215
  messages = [{"role": "user", "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text} \n{self.tl}:"}]
216
  return pipe(messages, max_new_tokens=512, early_stopping=True, num_beams=5)[0]["generated_text"][1]["content"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
 
218
  def HelsinkiNLP_mulroa(self):
219
  try:
 
592
  elif model_name == 'Google':
593
  translated_text = Translators(model_name, sl, tl, input_text).google()
594
 
 
 
 
595
  elif "salamandra" in model_name.lower():
596
  translated_text = Translators(model_name, s_language, t_language, input_text).salamandratapipe()
597